ترغب بنشر مسار تعليمي؟ اضغط هنا

A Markov Basis for Conditional Test of Common Diagonal Effect in Quasi-Independence Model for Square Contingency Tables

131   0   0.0 ( 0 )
 نشر من قبل Hisayuki Hara
 تاريخ النشر 2008
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

In two-way contingency tables we sometimes find that frequencies along the diagonal cells are relatively larger(or smaller) compared to off-diagonal cells, particularly in square tables with the common categories for the rows and the columns. In this case the quasi-independence model with an additional parameter for each of the diagonal cells is usually fitted to the data. A simpler model than the quasi-independence model is to assume a common additional parameter for all the diagonal cells. We consider testing the goodness of fit of the common diagonal effect by Markov chain Monte Carlo (MCMC) method. We derive an explicit form of a Markov basis for performing the conditional test of the common diagonal effect. Once a Markov basis is given, MCMC procedure can be easily implemented by techniques of algebraic statistics. We illustrate the procedure with some real data sets.



قيم البحث

اقرأ أيضاً

We consider settings in which the data of interest correspond to pairs of ordered times, e.g, the birth times of the first and second child, the times at which a new user creates an account and makes the first purchase on a website, and the entry and survival times of patients in a clinical trial. In these settings, the two times are not independent (the second occurs after the first), yet it is still of interest to determine whether there exists significant dependence {em beyond} their ordering in time. We refer to this notion as quasi-(in)dependence. For instance, in a clinical trial, to avoid biased selection, we might wish to verify that recruitment times are quasi-independent of survival times, where dependencies might arise due to seasonal effects. In this paper, we propose a nonparametric statistical test of quasi-independence. Our test considers a potentially infinite space of alternatives, making it suitable for complex data where the nature of the possible quasi-dependence is not known in advance. Standard parametric approaches are recovered as special cases, such as the classical conditional Kendalls tau, and log-rank tests. The tests apply in the right-censored setting: an essential feature in clinical trials, where patients can withdraw from the study. We provide an asymptotic analysis of our test-statistic, and demonstrate in experiments that our test obtains better power than existing approaches, while being more computationally efficient.
In this work we define log-linear models to compare several square contingency tables under the quasi-independence or the quasi-symmetry model, and the relevant Markov bases are theoretically characterized. Through Markov bases, an exact test to eval uate if two or more tables fit a common model is introduced. Two real-data examples illustrate the use of these models in different fields of applications.
Markov basis for statistical model of contingency tables gives a useful tool for performing the conditional test of the model via Markov chain Monte Carlo method. In this paper we derive explicit forms of Markov bases for change point models and bloc k diagonal effect models, which are typical block-wise effect models of two-way contingency tables, and perform conditional tests with some real data sets.
We propose a general new method, the conditional permutation test, for testing the conditional independence of variables $X$ and $Y$ given a potentially high-dimensional random vector $Z$ that may contain confounding factors. The proposed test permut es entries of $X$ non-uniformly, so as to respect the existing dependence between $X$ and $Z$ and thus account for the presence of these confounders. Like the conditional randomization test of Cand`es et al. (2018), our test relies on the availability of an approximation to the distribution of $X mid Z$. While Cand`es et al. (2018)s test uses this estimate to draw new $X$ values, for our test we use this approximation to design an appropriate non-uniform distribution on permutations of the $X$ values already seen in the true data. We provide an efficient Markov Chain Monte Carlo sampler for the implementation of our method, and establish bounds on the Type I error in terms of the error in the approximation of the conditional distribution of $Xmid Z$, finding that, for the worst case test statistic, the inflation in Type I error of the conditional permutation test is no larger than that of the conditional randomization test. We validate these theoretical results with experiments on simulated data and on the Capital Bikeshare data set.
Inference in current domains of application are often complex and require us to integrate the expertise of a variety of disparate panels of experts and models coherently. In this paper we develop a formal statistical methodology to guide the networki ng together of a diverse collection of probabilistic models. In particular, we derive sufficient conditions that ensure inference remains coherent across the composite before and after accommodating relevant evidence.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا