ترغب بنشر مسار تعليمي؟ اضغط هنا

Relativistic Particle-In-Cell Simulation Studies of Prompt and Early Afterglows from GRBs

91   0   0.0 ( 0 )
 نشر من قبل Ken-Ichi Nishikawa
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English
 تأليف K.-I. Nishikawa




اسأل ChatGPT حول البحث

Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks e.g. gamma-ray bursts (GRBs) active galactic nuclei (AGNs) and microquasars commonly exhibit power-law emission spectra. Recent PIC simulations of relativistic electron-ion (or electron-positron) jets injected into a stationary medium show that particle acceleration occurs within the downstream jet. In collisionless relativistic shocks particle (electron, positron and ion) acceleration is due to plasma waves and their associated instabilities (e.g. the Weibel (filamentation) instability) created in the shock region. The simulations show that the Weibel instability is responsible for generating and amplifying highly non-uniform small-scale magnetic fields. These fields contribute to the electrons transverse deflection behind the jet head. The resulting ``jitter radiation from deflected electrons has different properties compared to synchrotron radiation which assumes a uniform magnetic field. Jitter radiation may be important for understanding the complex time evolution and/or spectra in gamma-ray bursts, relativistic jets in general and supernova remnants.



قيم البحث

اقرأ أيضاً

We study the observed correlations between the duration and luminosity of the early afterglow plateau and the isotropic gamma-ray energy release during the prompt phase. We discuss these correlations in the context of two scenarios for the origin of the plateaus. In the first one the afterglow is made by the forward shock and the plateau results from variations of the microphysics parameters while in the second one the early afterglow is made by a long-lived reverse shock propagating in a low Lorentz factor tail of the ejecta.
We performed the first systematic search for the minimum variability time scale between 0.3 and 10 keV studying the 28 brightest early (<3000 s) afterglows detected by Swift-XRT up to March 2008. We adopt the power spectrum analysis in the time domai n: unlike the Fourier spectrum, this is suitable to study the rms variations at different time-scales. We find that early XRT afterglows show variability in excess of the Poissonian noise level on time-scales as short as about 1 s (rest frame value), with the shortest t_{min} associated with the highest energy band. The gamma-ray prompt emission of GRB080319B shows a characteristic average variability time-scale t_{var} of about 1s; this parameter undergoes a remarkable evolution during the prompt emission (BAT observation).
The prompt emission from gamma-ray bursts (GRBs) still requires a physical explanation. Studies of time-resolved GRB spectra, observed in the keV-MeV range, show that a hybrid model consisting of two components, a photospheric and a non-thermal compo nent, in many cases fits bright, single-pulsed bursts as well as, and in some instances even better than, the Band function. With an energy coverage from 8 keV up to 300 GeV, GLAST will give us an unprecedented opportunity to further investigate the nature of the prompt emission. In particular, it will give us the possibility to determine whether a photospheric component is the determining feature of the spectrum or not. Here we present a short study of the ability of GLAST to detect such a photospheric component in the sub-MeV range for typical bursts, using simulation tools developed within the GLAST science collaboration.
109 - Y.F. Huang , T. Lu , K.S. Cheng 2004
The overall dynamical evolution and radiation mechanism of $gamma$-ray burst jets are briefly introduced. Various interesting topics concerning beaming in $gamma$-ray bursts are discussed, including jet structures, orphan afterglows and cylindrical j ets. The possible connection between $gamma$-ray bursts and neutron star kicks is also addressed.
We construct Boris-type schemes for integrating the motion of charged particles in particle-in-cell (PIC) simulation. The new solvers virtually combine the 2-step Boris procedure arbitrary n times in the Lorentz-force part, and therefore we call them the multiple Boris solvers. Using Chebyshev polynomials, a one-step form of the new solvers is provided. The new solvers give n^2 times smaller errors, allow larger timesteps, and have a long-term stability. We present numerical tests of the new solvers, in comparison with other particle integrators.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا