ﻻ يوجد ملخص باللغة العربية
(Ga,Mn)As and related diluted magnetic semiconductors play a major role in spintronics research because of their potential to combine ferromagnetism and semiconducting properties in one physical system. Ferromagnetism requires ~1-10% of substitutional Mn_Ga. Unintentional defects formed during growth at these high dopings significantly suppress the Curie temperature. We present experiments in which by etching the (Ga,Mn)As surface oxide we achieve a dramatic reduction of annealing times necessary to optimize the ferromagnetic film after growth, and report Curie temperature of 180 K at approximately 8% of Mn_Ga. Our study elucidates the mechanism controlling the removal of the most detrimental, interstitial Mn defect. The limits and utility of electrical gating of the highly-doped (Ga,Mn)As semiconductor are not yet established; so far electric-field effects have been demonstrated on magnetization with tens of Volts applied on a top-gate, field effect transistor structure. In the second part of the paper we present a back-gate, n-GaAs/AlAs/GaMnAs transistor operating at a few Volts. Inspired by the etching study of (Ga,Mn)As films we apply the oxide-etching/re-oxidation procedure to reduce the thickness (arial density of carriers) of the (Ga,Mn)As and observe a large enhancement of the gating efficiency. We report gatable spintronic characteristics on a series of anisotropic magnetoresistance measurements.
We report Curie temperatures up to 150 K in annealed Ga1-xMnxAs epilayers grown with a relatively low As:Ga beam equivalent pressure ratio. A variety of measurements (magnetization, Hall effect, magnetic circular dichroism and Raman scattering) show
We study the effects of growth temperature, Ga:As ratio and post-growth annealing procedure on the Curie temperature, Tc, of (Ga,Mn)As layers grown by molecular beam epitaxy. We achieve the highest Tc values for growth temperatures very close to the
We report a clear correspondence between changes in the Curie temperature and carrier density upon annealing in epitaxially grown (Ga,Mn)As layers with thicknesses in the range between 5 nm and 20 nm. The changes are dependent on the layer thickness,
We show that effective electrical control of the magnetic properties in the ferromagnetic semiconductor (Ga,Mn)As is possible using the strain induced by a piezoelectric actuator even in the limit of high doping levels and high Curie temperatures, wh
The effect of microscopic Mn cluster distribution on the Curie temperature (Tc) is studied using density-functional calculations. We find that the calculated Tc depends crucially on the microscopic cluster distribution, which can explain the abnormal