ﻻ يوجد ملخص باللغة العربية
During the analysis of the CR39 Nuclear Track Detectors (NTDs) of the SLIM experiment exposed at the high altitude lab of Chacaltaya (Bolivia) we observed a sequence of puzzling etch-pits. We made a detailed investigation of all the CR39 and Makrofol detectors in the same stack and in all the stacks around the candidate event. We found a second puzzling sequence of etch-pits (plus some single etch-pits). The analysis of this configuration was important because we were searching for rare particles (Magnetic Monopoles, Nuclearites, Q-balls) in the cosmic radiation. Thus we analyzed in detail the evolution with increasing etching time of the etch-pits. We concluded that the two sequences of the etch-pits (and some other background etch-pits) may have originated from a rare manufacture malfunctioning which involved 1 m^2 of produced CR39.
The SLIM experiment at the Chacaltaya high altitude laboratory was sensitive to nuclearites and Q-balls, which could be present in the cosmic radiation as possible Dark Matter components. It was sensitive also to strangelets, i.e. small lumps of Stra
The search for magnetic monopoles in the cosmic radiation remains one of the main aims of non-accelerator particle astrophysics. Experiments at high altitude allow lower mass thresholds with respect to detectors at sea level or underground. The SLIM
The search for rare particles in the cosmic radiation remains one of the main aims of non-accelerator particle astrophysics. Experiments at high altitude allow lower mass thresholds with respect to detectors at sea level or underground. The SLIM expe
The SLIM experiment was a large array of nuclear track detectors located at the Chacaltaya high altitude Laboratory (5230 m a.s.l.). The detector was in particular sensitive to Intermediate Mass Magnetic Monopoles, with masses 10^5 < M <10^{12} GeV.
SLIM is a large area experiment (440 m2) installed at the Chacaltaya cosmic ray laboratory since 2001, and about 100 m2 at Koksil, Himalaya, since 2003. It is devoted to the search for intermediate mass magnetic monopoles (107-1013 GeV/c2) and nuclea