ﻻ يوجد ملخص باللغة العربية
We investigate the spectral properties of a hole moving in a two-dimensional Hubbard model for strongly correlated t_2g electrons. Although superexchange interactions are Ising-like, a quasi-one-dimensional coherent hole motion arises due to effective three-site terms. This mechanism is fundamentally different from the hole motion via quantum fluctuations in the conventional spin model with SU(2) symmetry. The orbital model describes also propagation of a hole in some e_g compounds, and we argue that orbital degeneracy alone does not lead to hole self-localization.
We discuss the notions of spin-orbital polarization and ordering in paramagnetic materials, and address their consequences in transition metal oxides. Extending the combined density functional and dynamical mean field theory scheme to the case of mat
The orbital excitations of a series of transition-metal compounds are studied by means of optical spectroscopy. Our aim was to identify signatures of collective orbital excitations by comparison with experimental and theoretical results for predomina
The study of strong electron correlations in transition metal oxides with modern microscopy and diffraction techniques unveiled a fascinating world of nanosize textures in the spin, charge, and crystal structure. Examples range from high $T_c$ superc
We outline a general mechanism for Orbital-selective Mott transition (OSMT), the coexistence of both itinerant and localized conduction electrons, and show how it can take place in a wide range of realistic situations, even for bands of identical wid
We investigate the correlation-induced Mott, magnetic, and topological phase transitions in artificial (111) bilayers of perovskite transition-metal oxides LaAuO$_3$ and SrIrO$_3$ for which the previous density-functional theory calculations predicte