ترغب بنشر مسار تعليمي؟ اضغط هنا

A complete one-loop calculation of electroweak supersymmetric effects in $t$-channel single top production at LHC

123   0   0.0 ( 0 )
 نشر من قبل Matteo Beccaria
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We have computed the complete one-loop electroweak effects in the MSSM for single top (and single antitop) production in the $t$-channel at hadron colliders, generalizing a previous analysis performed for the dominant $dt$ final state and fully including QED effects. The results are quite similar for all processes. The overall Standard Model one-loop effect is small, of the few percent size. This is due to a compensation of weak and QED contributions that are of opposite sign. The genuine SUSY contribution is generally quite modest in the mSUGRA scenario. The experimental observables would therefore only practically depend, in this framework, on the CKM $Wtb$ coupling.



قيم البحث

اقرأ أيضاً

The process of stop-chargino production at LHC has been calculated in the Minimal Supersymmetric Standard Model at the complete electroweak one-loop level, assuming a mSUGRA symmetry breaking scheme. Several properties of the angular and invariant ma ss distributions of the basic bottom-gluon to stop-chargino amplitudes have been derived. For a meaningful collection of different benchmark points the overall electroweak one-loop effects are at most of the order of a few percent. At the realistically expected LHC accuracy, the main supersymmetric electroweak features of the process can be therefore essentially derived in this theoretical scheme from the simple Born level expressions.
We compute, in the MSSM framework, the sum of the one-loop electroweak and of the total QED radiation effects for the process $pp to t W+X$, initiated by the parton process $bgto tW$. Combining these terms with the existing NLO calculations of SM and SUSY QCD corrections, we analyze the overall one-loop supersymmetric effects on the partial rates of the process, obtained by integrating the differential cross section up to a final variable invariant mass. We conclude that, for some choices of the SUSY parameters and for relatively small final invariant masses, they could reach the relative ten percent level, possibly relevant for a dedicated experimental effort at LHC.
The process of charged Higgs production in association with a top quark at the LHC has been calculated at the complete NLO electroweak level both in a Two Higgs Doublets Model and in the Minimal Supersymmetric Standard Model, assuming a mSUGRA breaki ng scheme. We have numerically explored the size of the one-loop corrections in two typical supersymmetric scenarios, with particular attention to the tan beta dependence, and we have found that they remain perturbatively small but possibly sizable, reaching a 20% limit for extreme values of tan beta, when the complete set of Feynman diagrams is taken into account.
We present the first complete calculation of the one-loop electroweak effect in the process of semi-inclusive bottom-Higgs production at LHC in the MSSM. The size of the electroweak contribution depends on the choice of the final produced neutral Hig gs boson, and can be relevant, in some range of the input parameters. A comparison of the one-loop results obtained in two different renormalization schemes is also performed, showing a very good NLO scheme independence. We further comment on two possible, simpler, approximations of the full NLO result, and on their reliabilty.
In this work we present a calculation of both t-channel and s-channel single-top production at next-to-leading order in QCD for the Tevatron and for the LHC at a centre-of-mass energy of 7 TeV. All the cross sections and kinematical distributions pre sented include leading non-factorizable corrections arising from interferences of the production and decay subprocesses, extending previous results beyond the narrow-width approximation. The new off-shell effects are found to be generally small, but can be sizeable close to kinematical end-points and for specific distributions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا