Resonant cyclotron scattering in magnetars emission


الملخص بالإنكليزية

(Abridged) We present a systematic fit of a model of resonant cyclotron scattering (RCS) to the X-ray data of ten magnetars, including canonical and transient anomalous X-ray pulsars (AXPs), and soft gamma repeaters (SGRs). In this scenario, non-thermal magnetar spectra in the soft X-rays (i.e. below ~10 keV) result from resonant cyclotron scattering of the thermal surface emission by hot magnetospheric plasma. We find that this model can successfully account for the soft X-ray emission of magnetars, while using the same number of free parameters than the commonly used empirical blackbody plus power-law model. However, while the RCS model can alone reproduce the soft X-ray spectra of AXPs, the much harder spectra of SGRs below ~10 keV, requires the addition of a power-law component (the latter being the same component responsible for their hard X-ray emission). Although this model in its present form does not explain the hard X-ray emission of a few of these sources, we took this further component into account in our modeling not to overlook their contribution in the ~4-10 keV band. We find that the entire class of sources is characterized by magnetospheric plasma with a density which, at resonant radius, is about 3 orders of magnitudes higher than n_{GJ}, the Goldreich-Julian electron density. The inferred values of the intervening hydrogen column densities, are also in better agreement with more recent estimates inferred from the fit of single X-ray edges. For the entire sample of observations, we find indications for a correlation between the scattering depth and the electron thermal velocity, and the field strength. Moreover, in most transient anomalous X-ray pulsars the outburst state is characterized by a relatively high surface temperature which cools down during the decay.

تحميل البحث