ﻻ يوجد ملخص باللغة العربية
Given a countable group $X$ we study the algebraic structure of its superextension $lambda(X)$. This is a right-topological semigroup consisting of all maximal linked systems on $X$ endowed with the operation $$mathcal Acircmathcal B={Csubset X:{xin X:x^{-1}Cinmathcal B}inmathcal A}$$ that extends the group operation of $X$. We show that the subsemigroup $lambda^circ(X)$ of free maximal linked systems contains an open dense subset of right cancelable elements. Also we prove that the topological center of $lambda(X)$ coincides with the subsemigroup $lambda^bullet(X)$ of all maximal linked systems with finite support. This result is applied to show that the algebraic center of $lambda(X)$ coincides with the algebraic center of $X$ provided $X$ is countably infinite. On the other hand, for finite groups $X$ of order $3le|X|le5$ the algebraic center of $lambda(X)$ is strictly larger than the algebraic center of $X$.
We prove that the minimal left ideals of the superextension $lambda(Z)$ of the discrete group $Z$ of integers are metrizable topological semigroups, topologically isomorphic to minimal left ideals of the superextension $lambda(Z_2)$ of the compact group $Z_2$ of integer 2-adic numbers.
It is proved that any countable topological group in which the filter of neighborhoods of the identity element is not rapid contains a discrete set with precisely one nonisolated point. This gives a negative answer to Protasovs question on the existe
Hindmans celebrated Finite Sums Theorem, and its high-dimensional version due to Milliken and Taylor, are extended from covers of countable sets to covers of arbitrary topological spaces with Mengers classic covering property. The methods include, in
As proved by Dimov [Acta Math. Hungarica, 129 (2010), 314--349], there exists a duality L between the category HLC of locally compact Hausdorff spaces and continuous maps, and the category DHLC of complete local contact algebras and appropriate morph
Given a semilattice $X$ we study the algebraic properties of the semigroup $upsilon(X)$ of upfamilies on $X$. The semigroup $upsilon(X)$ contains the Stone-Cech extension $beta(X)$, the superextension $lambda(X)$, and the space of filters $phi(X)$ on