ﻻ يوجد ملخص باللغة العربية
Various topological properties of D-branes in the type--IIA theory are captured by the topologically twisted B-model, treating D-branes as objects in the bounded derived category of coherent sheaves on the compact part of the target space. The set of basic D-branes wrapped on the homology cycles of the compact space are taken to reside in the heart of t-structures of the derived category of coherent sheaves on the space at any point in the Kahler moduli space. The stability data entails specifying a t-structure along with a grade for sorting the branes. Considering an example of a degenerate Calabi-Yau space, obtained via geometric engineering, that retains but a projective curve as the sole non-compact part, we identify the regions in the Kahler moduli space of the curve that pertain to the different t-structures of the bounded derived category of coherent sheaves on the curve corresponding to the different phases of the topological branes.
We consider categories of generalized perverse sheaves, with relaxed constructibility conditions, by means of the process of gluing $t$-structures and we exhibit explicit abelian categories defined in terms of standard sheaves categories which are eq
We conjecture that any perverse sheaf on a compact aspherical Kahler manifold has non-negative Euler characteristic. This extends the Singer-Hopf conjecture in the Kahler setting. We verify the stronger conjecture when the manifold X has non-positive
In algebraic geometry, one often encounters the following problem: given a scheme X, find a proper birational morphism from Y to X where the geometry of Y is nicer than that of X. One version of this problem, first studied by Faltings, requires Y to
Let $Q$ be a finite quiver without loops and $mathcal{Q}_{alpha}$ be the Lusztig category for any dimension vector $alpha$. The purpose of this paper is to prove that all Frobenius eigenvalues of the $i$-th cohomology $mathcal{H}^i(mathcal{L})|_x$ fo
When $W$ is a finite Coxeter group acting by its reflection representation on $E$, we describe the category ${mathsf{Perv}}_W(E_{mathbb C}, {mathcal{H}}_{mathbb C})$ of $W$-equivariant perverse sheaves on $E_{mathbb C}$, smooth with respect to the st