We consider the parity-violating two-pion-exchange potential obtained from the covariant formalism in the past and the state-of-the-art effective field theory approach. We discuss the behavior of the potential in coordinate space and its application to the parity-violating asymmetry in $vec{n} p to d gamma$ at threshold.
We study elastic N$alpha $ scattering and produce a quantitative correlation between the range of the effective potential and the energy of the system. This allows the identification of the waves and energies for which the scattering may be said to b
e peripheral. We then show that the corresponding phase shifts are sensitive to the tail of the NN potential, which is due to the exchange of two pions. However, the present uncertainties in the experimental phase shifts prevent the use of N$alpha $ scattering to discriminate the existing models for the NN interaction.
Parity violating (PV) contributions due to interference between $gamma$ and $Z^0$ exchange are calculated for pion electroproduction off the nucleon. A phenomenological model with effective Lagrangians is used to determine the resulting asymmetry for
the energy region between threshold and $Delta(1232)$ resonance. The $Delta$ resonance is treated as a Rarita-Schwinger field with phenomenological $N Delta$ transition currents. The background contributions are given by the usual Born terms using the pseudovector $pi N$ Lagrangian. Numerical results for the asymmetry are presented.
Chiral effective field theory (ChEFT) is a modern framework to analyze the properties of few-nucleon systems at low energies. It is based on the most general effective Lagrangian for pions and nucleons consistent with the chiral symmetry of QCD. For
energies below the pion-production threshold it is possible to eliminate the pionic degrees of freedom and derive nuclear potentials and nuclear current operators solely in terms of the nucleonic degrees of freedom. This is very important because, despite a lot of experience gained in the past, the consistency between two-nucleon forces, many-nucleon forces and the corresponding current operators has not been achieved yet. In this presentation we consider the recently derived long-range two-pion exchange (TPE) contributions to the nuclear current operator which appear at next-to leading order of the chiral expansion. These operators do not contain any free parameters. We study their role in the deuteron photodisintegration reaction and compare our predictions with experimental data. The bound and scattering states are calculated using five different chiral N2LO nucleon-nucleon (NN) potentials which allows to estimate the theoretical uncertainty at a given order in the chiral expansion. For some observables the results are very close to the reference predictions based on the AV18 NN potential and the current operator (partly) consistent with this force.
We investigate parity-violating asymmetries in polarized n p radiative capture, and deuteron electro-disintegration in quasi-elastic kinematics, using the DDH model for the parity-violating nucleon-nucleon interaction. We find dramatic cancellations
between the asymmetries induced by the parity-violating interaction and those arising from the associated parity-violating pion-exchange currents. In np capture, the model-dependence of the result is nevertheless quite small because of constraints arising through the Siegert evaluation of the relevant E1 matrix element. In quasi-elastic electron scattering these processes are found to be insignificant comared to the asymmetry produced by the gamma-Z interference on individual nucleons. These two experiments, then, provide clean probes of different aspects of weak-interaction physics associated with parity violation in the np system.
The non-mesonic weak decay of $Lambda$--hypernuclei is studied within a one-meson-exchange potential supplemented by a chirally motivated two-pion-exchange mechanism. The effects of final state interactions on the outgoing nucleons are also taken int
o account. In view of the severe discrepancies between theoretical expectations and experimental data, particular attention is payed to the asymmetry of the protons emitted by polarized hypernuclei. The one-meson-exchange model describes the non-mesonic rates and the neutron-to-proton ratio satisfactorily but predicts a too large and negative asymmetry parameter. The uncorrelated and correlated two-pion mechanisms change the rates moderately, thus maintaining the agreement with experiment. The modification in the strength and sign of some decay amplitudes becomes crucial and produces asymmetry parameters which lie well within the experimental observations.