ترغب بنشر مسار تعليمي؟ اضغط هنا

The long-period Galactic Cepheid RS Puppis - I. A geometric distance from its light echoes

190   0   0.0 ( 0 )
 نشر من قبل Pierre Kervella
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Context: The bright southern Cepheid RS Pup is surrounded by a circumstellar nebula reflecting the light from the central star. The propagation of the light variations from the Cepheid inside the dusty nebula creates spectacular light echoes that can be observed up to large distances from the star itself. This phenomenon is currently unique in this class of stars. Aims: For this relatively distant star, the trigonometric parallax available from Hipparcos has a low accuracy. A careful observation of the light echoes has the potential to provide a very accurate, geometric distance to RS Pup. Methods: We obtained a series of CCD images of RS Pup with the NTT/EMMI instrument, covering the variation period of the star (P=41.4d). This allowed us to track the progression of the light wavefronts over the nebular features surrounding the star. We measured precisely the phase lag of the photometric variation in several regions of the circumstellar nebula. Results: From our phase lag measurements, we derived a geometric distance of 1992 +/- 28 pc to RS Pup. This distance is affected by a total uncertainty of 1.4%, and corresponds to a parallax of pi = 0.502 +/- 0.007 mas and a distance modulus of mu = 11.50 +/- 0.03. Conclusions: The geometric distance we derived is by far the most accurate to a Cepheid, and among the most accurate to any star. RS Pup appears both as somewhat neglected and particularly promising to investigate the mass-loss history of Cepheids. Thanks to its highly accurate distance, it is also bound to become an important luminosity fiducial for the long period part of the period-luminosity diagram.



قيم البحث

اقرأ أيضاً

As one of the most luminous Cepheids in the Milky Way, the 41.5-day RS Puppis is an analog of the long-period Cepheids used to measure extragalactic distances. An accurate distance to this star would therefore help anchor the zero-point of the bright end of the period-luminosity relation. But, at a distance of about 2 kpc, RS Pup is too far away for measuring a direct trigonometric parallax with a precision of a few percent with existing instrumentation. RS Pup is unique in being surrounded by a reflection nebula, whose brightness varies as pulses of light from the Cepheid propagate outwards. We present new polarimetric imaging of the nebula obtained with HST/ACS. The derived map of the degree of linear polarization pL allows us to reconstruct the three-dimensional structure of the dust distribution. To retrieve the scattering angle from the pL value, we consider two different polarization models, one based on a Milky Way dust mixture and one assuming Rayleigh scattering. Considering the derived dust distribution in the nebula, we adjust a model of the phase lag of the photometric variations over selected nebular features to retrieve the distance of RS Pup. We obtain a distance of 1910 +/- 80 pc (4.2%), corresponding to a parallax of 0.524 +/- 0.022 mas. The agreement between the two polarization models we considered is good, but the final uncertainty is dominated by systematics in the adopted model parameters. The distance we obtain is consistent with existing measurements from the literature, but light echoes provide a distance estimate that is not subject to the same systematic uncertainties as other estimators (e.g. the Baade-Wesselink technique). RS Pup therefore provides an important fiducial for the calibration of systematic uncertainties of the long-period Cepheid distance scale.
111 - Pierre Kervella 2020
The Milky Way Cepheid RS Puppis is a particularly important calibrator for the Leavitt law (the Period-Luminosity relation). It is a rare, long period pulsator (P=41.5 days), and a good analog of the Cepheids observed in distant galaxies. It is the o nly known Cepheid to be embedded in a large (~0.5 pc) dusty nebula, that scatters the light from the pulsating star. Due to the light travel time delay introduced by the scattering on the dust, the brightness and color variations of the Cepheid imprint spectacular light echoes on the nebula. I here present a brief overview of the studies of this phenomenon, in particular through polarimetric imaging obtained with the HST/ACS camera. These observations enabled us to determine the geometry of the nebula and the distance of RS Pup. This distance determination is important in the context of the calibration of the Baade-Wesselink technique and of the Leavitt law.
The projection factor (p-factor) is an essential component of the classical Baade-Wesselink (BW) technique, that is commonly used to determine the distances to pulsating stars. It is a multiplicative parameter used to convert radial velocities into p ulsational velocities. As the BW distances are linearly proportional to the p-factor, its accurate calibration for Cepheids is of critical importance for the reliability of their distance scale. We focus on the observational determination of the p-factor of the long-period Cepheid RS Pup (P = 41.5 days). This star is particularly important as this is one of the brightest Cepheids in the Galaxy and an analog of the Cepheids used to determine extragalactic distances. An accurate distance of 1910 +/- 80 pc (+/- 4.2%) has recently been determined for RS Pup using the light echoes propagating in its circumstellar nebula. We combine this distance with new VLTI/PIONIER interferometric angular diameters, photometry and radial velocities to derive the p-factor of RS Pup using the code Spectro-Photo-Interferometry of Pulsating Stars (SPIPS). We obtain p = 1.250 +/- 0.064 (+/-5.1%), defined for cross-correlation radial velocities. Together with measurements from the literature, the p-factor of RS Pup confirms the good agreement of a constant p = 1.293 +/- 0.039 (+/-3.0%) model with the observations. We conclude that the p-factor of Cepheids is constant or mildly variable over a broad range of periods (3.7 to 41.5 days).
The long-period Cepheid RS Pup is surrounded by a large dusty nebula reflecting the light from the central star. Due to the changing luminosity of the central source, light echoes propagate into the nebula. This remarkable phenomenon was the subject of Paper I.The origin and physical properties of the nebula are however uncertain: it may have been created through mass loss from the star itself, or it could be the remnant of a pre-existing interstellar cloud. Our goal is to determine the 3D structure of the nebula, and estimate its mass. Knowing the geometrical shape of the nebula will also allow us to retrieve the distance of RS Pup in an unambiguous manner using a model of its light echoes (in a forthcoming work). The scattering angle of the Cepheid light in the circumstellar nebula can be recovered from its degree of linear polarization. We thus observed the nebula surrounding RS Pup using the polarimetric imaging mode of the VLT/FORS instrument, and obtained a map of the degree and position angle of linear polarization. From our FORS observations, we derive a 3D map of the distribution of the dust, whose overall geometry is an irregular and thin layer. The nebula does not present a well-defined symmetry. Using a simple model, we derive a total dust mass of M(dust) = 2.9 +/- 0.9 Msun for the dust within 1.8 arcmin of the Cepheid. This translates into a total mass of M(gas+dust) = 290 +/- 120 Msun, assuming a dust-to-gas ratio of 1.0 +/- 0.3 %. The high mass of the dusty nebula excludes that it was created by mass-loss from the star. However, the thinness nebula is an indication that the Cepheid participated to its shaping, e.g. through its radiation pressure or stellar wind. RS Pup therefore appears as a regular long-period Cepheid located in an exceptionally dense interstellar environment.
Galactic starburst clusters play a twin role in astrophysics, serving as laboratories for the study of stellar physics and also delineating the structure and recent star formation history of the Milky Way. In order to exploit these opportunities we h ave undertaken a multi-epoch spectroscopic survey of the red supergiant dominated young massive clusters thought to be present at both near and far ends of the Galactic Bar. Significant spectroscopic variability suggestive of radial pulsations was found for the yellow supergiant VdBH 222 #505. Follow-up photometric investigations revealed modulation with a period of ~23.325d; both timescale and pulsational profile are consistent with a Cepheid classification. As a consequence #505 may be recognised as one of the longest period Galactic cluster Cepheids identified to date and hence of considerable use in constraining the bright end of the period/luminosity relation at solar metallicities. In conjunction with extant photometry we infer a distance of ~6kpc for VdBH222 and an age of ~20Myr. This results in a moderate reduction in both integrated cluster mass (~2x10^4Msun) and the initial stellar masses of the evolved cluster members (~10Msun). As such, VdBH222 becomes an excellent test-bed for studying the properties of some of the lowest mass stars observed to undergo type-II supernovae. Moreover, the distance is in tension with a location of VdBH 222 at the far end of the Galactic Bar. Instead a birthsite in the near 3kpc arm is suggested; providing compelling evidence of extensive recent star formation in a region of the inner Milky Way which has hitherto been thought to be devoid of such activity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا