ﻻ يوجد ملخص باللغة العربية
On directed and undirected Barabasi-Albert networks the Ising model with spin S=1/2 in the presence of a kind of noise is now studied through Monte Carlo simulations. The noise spectrum P(n) follows a power law, where P(n) is the probability of flipping randomly select n spins at each time step. The noise spectrum P(n) is introduced to mimic the self-organized criticality as a model influence of a complex environment. In this model, different from the square lattice, the order-disorder phase transition of the order parameter is not observed. For directed Barabasi-Albert networks the magnetisation tends to zero exponentially and for undirected Barabasi-Albert networks, it remains constant.
Using Monte Carlo simulations, we study the evolution of contigent cooperation and ethnocentrism in the one-move game. Interactions and reproduction among computational agents are simulated on {it undirected} and {it directed} Barabasi-Albert (BA) ne
The existence of spontaneous magnetization of Ising spins on directed Barabasi-Albert networks is investigated with seven neighbors, by using Monte Carlo simulations. In large systems we see the magnetization for different temperatures T to decay aft
We check the existence of a spontaneous magnetisation of Ising and Potts spins on semi-directed Barabasi-Albert networks by Monte Carlo simulations. We verified that the magnetisation for different temperatures $T$ decays after a characteristic time
With up to 7 million spins, the existence of spontaneous magnetization of Ising spins on directed Barabasi-Albert networks is investigated by Monte Carlo simulations. We confirm our earlier result that the magnetization for different temperatures T d
We consider two consensus formation models coupled to Barabasi-Albert networks, namely the Majority Vote model and Biswas-Chatterjee-Sen model. Recent works point to a non-universal behavior of the Majority Vote model, where the critical exponents ha