ﻻ يوجد ملخص باللغة العربية
We introduce and study a new class of kinetic equations, which arise in the description of nonequilibrium macroscopic dynamics of soliton gases with elastic collisions between solitons. These equations represent nonlinear integro-differential systems and have a novel structure, which we investigate by studying in detail the class of $N$-component `cold-gas hydrodynamic reductions. We prove that these reductions represent integrable linearly degenerate hydrodynamic type systems for arbitrary $N$ which is a strong evidence in favour of integrability of the full kinetic equation. We derive compact explicit representations for the Riemann invariants and characteristic velocities of the hydrodynamic reductions in terms of the `cold-gas component densities and construct a number of exact solutions having special properties (quasi-periodic, self-similar). Hydrodynamic symmetries are then derived and investigated. The obtained results shed the light on the structure of a continuum limit for a large class of integrable systems of hydrodynamic type and are also relevant to the description of turbulent motion in conservative compressible flows.
We derive generalised multi-flow hydrodynamic reductions of the nonlocal kinetic equation for a soliton gas and investigate their structure. These reductions not only provide further insight into the properties of the new kinetic equation but also co
We study nonlocal reductions of coupled equations in $1+1$ dimensions of the Heisenberg ferromagnet type. The equations under consideration are completely integrable and have a Lax pair related to a linear bundle in pole gauge. We describe the integr
We present in this report 1+1 dimensional nonlinear partial differential equation integrable through inverse scattering transform. The integrable system under consideration is a pseudo-Hermitian reduction of a matrix generalization of classical 1+1 d
The soliton solutions of the Camassa-Holm equation are derived by the implementation of the dressing method. The form of the one and two soliton solutions coincides with the form obtained by other methods.
We report on an experimental realization of a bi-directional soliton gas in a 34~m-long wave flume in shallow water regime. We take advantage of the fission of a sinusoidal wave to inject continuously solitons that propagate along the tank, back and