ﻻ يوجد ملخص باللغة العربية
The behavior of the 1D Holstein polaron is described, with emphasis on lattice coarsening effects, by distinguishing between adiabatic and nonadiabatic contributions to the local correlations and dispersion properties. The original and unifying systematization of the crossovers between the different polaron behaviors, usually considered in the literature, is obtained in terms of quantum to classical, weak coupling to strong coupling, adiabatic to nonadiabatic, itinerant to self-trapped polarons and large to small polarons. It is argued that the relationship between various aspects of polaron states can be specified by five regimes: the weak-coupling regime, the regime of large adiabatic polarons, the regime of small adiabatic polarons, the regime of small nonadiabatic (Lang-Firsov) polarons, and the transitory regime of small pinned polarons for which the adiabatic and nonadiabatic contributions are inextricably mixed in the polaron dispersion properties. The crossovers between these five regimes are positioned in the parameter space of the Holstein Hamiltonian.
We study Holstein polarons in three-dimensional anisotropic materials. Using a variational exact diagonalization technique we provide highly accurate results for the polaron mass and polaron radius. With these data we discuss the differences between
We utilize an exact variational numerical procedure to calculate the ground state properties of a polaron in the presence of a Rashba-like spin orbit interaction. Our results corroborate with previous work performed with the Momentum Average approxim
The eigenstate thermalization hypothesis (ETH) is a successful theory that provides sufficient criteria for ergodicity in quantum many-body systems. Most studies were carried out for Hamiltonians relevant for ultracold quantum gases and single-compon
We discuss polaron formation in disordered electron-phonon systems.
In the context of the Holstein polaron problem it is shown that the dynamical mean field theory (DMFT) corresponds to the summation of a special class of local diagrams in the skeleton expansion of the self-energy. In the real space representation, t