ﻻ يوجد ملخص باللغة العربية
Most methods for modelling dynamics posit just two time scales: a fast and a slow scale. But many applications, including many in continuum mechanics, possess a wide variety of space-time scales; often they possess a continuum of space-time scales. I discuss an approach to modelling the discretised dynamics of advection and diffusion with rigorous support for changing the resolved spatial grid scale by just a factor of two. The mapping of dynamics from a finer grid to a coarser grid is then iterated to generate a hierarchy of models across a wide range of space-time scales, all with rigorous support across the whole hierarchy. This approach empowers us with great flexibility in modelling complex dynamics over multiple scales.
This paper presents a novel spatio-temporal LSTM (SPATIAL) architecture for time series forecasting applied to environmental datasets. The framework was evaluated across multiple sensors and for three different oceanic variables: current speed, tempe
The dynamics of membrane undulations inside a viscous solvent is governed by distinctive, anomalous, power laws. Inside a viscoelastic continuous medium these universal behaviors are modified by the specific bulk viscoelastic spectrum. Yet, in struct
Using small-angle neutron scattering, we demonstrate that the complex magnetic domain patterns at the surface of Nd2Fe14B, revealed by quantitative Kerr and Faraday microscopy, propagate into the bulk and exhibit structural features with dimensions d
We demonstrate the advantages of feedforward loops using a Boolean network, which is one of the discrete dynamical models for transcriptional regulatory networks. After comparing the dynamical behaviors of network embedded feedback and feedforward lo
We define a new transfinite time model of computation, infinite time cellular automata. The model is shown to be as powerful than infinite time Turing machines, both on finite and infinite inputs; thus inheriting many of its properties. We then show