ﻻ يوجد ملخص باللغة العربية
We present a study on the origin of the metallicity evolution of the intra-cluster medium (ICM) by applying a semi-analytic model of galaxy formation to N-body/SPH (smoothed particle hydrodynamic) non-radiative numerical simulations of clusters of galaxies. The semi-analytic model includes gas cooling, star formation, supernovae feedback and metal enrichment, and is linked to the diffuse gas of the underlying simulations so that the chemical properties of gas particles are dynamically and consistently generated from stars in the galaxies. This hybrid model let us have information on the spatial distribution of metals in the ICM. The results obtained for a set of clusters with virial masses of ~1.5*10^15 h^{-1} M_sun contribute to the theoretical interpretation of recent observational X-ray data, which indicate a decrease of the average iron content of the intra-cluster gas with increasing redshift. We find that this evolution arises mainly as a result of a progressive increase of the iron abundance within ~0.15 R_vir. The clusters have been considerably enriched by z~1 with very low contribution from recent star formation. Low entropy gas that has been enriched at high redshift sinks to the cluster centre contributing to the evolution of the metallicity profiles.
(Abridged)The X-ray measurements of the ICM metallicity are becoming more frequent due to the availability of powerful X-ray telescope with excellent spatial and spectral resolutions. The information which can be extracted from the measurements of th
We use high-resolution cosmological zoom-in simulations from the Feedback in Realistic Environment (FIRE) project to study the galaxy mass-metallicity relations (MZR) from z=0-6. These simulations include explicit models of the multi-phase ISM, star
The asteroid belt was dynamically shaped during and after planet formation. Despite representing a broad ring of stable orbits, the belt contains less than one one-thousandth of an Earth mass. The asteroid orbits are dynamically excited with a wide r
Understanding the evolution of the N/O ratio in the interstellar medium (ISM) of galaxies is essential if we are to complete our picture of the chemical evolution of galaxies at high redshift, since most observational calibrations of O/H implicitly d
Scaling relations for globular clusters (GC) differ from scaling relations for pressure supported (elliptical) galaxies. We show that two-body relaxation is the dominant mechanism in shaping the bivariate dependence of density on mass and Galactocent