ترغب بنشر مسار تعليمي؟ اضغط هنا

Integral field spectroscopy of planetary nebulae: mapping the line diagnostics and hydrogen-poor zones with VLT FLAMES

613   0   0.0 ( 0 )
 نشر من قبل Yiannis Tsamis
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Y. G. Tsamis




اسأل ChatGPT حول البحث

(Abridged) Results from the first dedicated study of Galactic PNe by means of optical integral field spectroscopy with the VLT FLAMES Argus IFU are presented. Three typical Galactic-disk PNe have been mapped with the 11.5x7.2 Argus array: two dimensional spectral maps of NGC 5882, 6153 and 7009 with 297 spatial pixels per target were obtained at sub-arcsec resolutions and 297 spectra per target were obtained in the 396.4-507.8 nm range. Spatially resolved maps of emission lines and of nebular physical properties were produced. The abundances of helium and of doubly ionized carbon and oxygen were derived from optical recombination lines (ORLs), while those of O^2+ were also derived from the collisionally excited lines (CELs). The abundance discrepancy problem was investigated by mapping the ratio of ORL/CEL abundances for O^2+ (the abundance discrepancy factor; ADF) across the face of the PNe. The ADF varies between targets and also with position within the targets attaining values of ~40 in the case of NGC 6153. Correlations of the ADF with geometric distance from the nucleus, as well as with [O III] electron temperature, plasma ionization state and other physical properties are established. Very small values of the temperature fluctuation parameter in the plane of the sky are found in all cases. It is argued that these results provide further evidence for the existence in typical PNe of a distinct nebular component consisting of hydrogen-deficient plasma. The zones containing this posited component appear as undulations in the C II and C II ORL abundance diagnostics of about 2 spatial pixels across; any associated structures should have physical sizes of less than ~1000 astronomical units. We propose that circumstellar disks, Abell 30-type knots, or Helix-type cometary globules may be involved.



قيم البحث

اقرأ أيضاً

126 - Y. G. Tsamis 2006
Recent weak emission-line long-slit surveys and modelling studies of PNe have convincingly argued in favour of the existence of an unknown component in the planetary nebula plasma consisting of cold, hydrogen-deficient gas, as an explanation for the long-standing recombination-line versus forbidden-line temperature and abundance discrepancy problems. Here we describe the rationale and initial results from a detailed spectroscopic study of three Galactic PNe undertaken with the VLT FLAMES integral-field unit spectrograph, which advances our knowledge about the small-scale physical properties, chemical abundances and velocity structure of these objects across a two-dimensional field of view, and opens up for exploration an uncharted territory in the study and modelling of PNe and photoionized nebulae in general.
We analyze the expansion of hydrogen-poor knots and filaments in the born-again planetary nebulae A30 and A78 based on Hubble Space Telescope (HST) images obtained almost 20 yr apart. The proper motion of these features generally increases with dista nce to the central star, but the fractional expansion decreases, i.e., the expansion is not homologous. As a result, there is not a unique expansion age, which is estimated to be 610-950 yr for A30 and 600-1140 yr for A78. The knots and filaments have experienced complex dynamical processes: the current fast stellar wind is mass loaded by the material ablated from the inner knots; the ablated material is then swept up until it shocks the inner edges of the outer, hydrogen-rich nebula. The angular expansion of the outer filaments shows a clear dependence on position angle, indicating that the interaction of the stellar wind with the innermost knots channels the wind along preferred directions. The apparent angular expansion of the innermost knots seems to be dominated by the rocket effect of evaporating gas and by the propagation of the ionization front inside them. Radiation-hydrodynamical simulations show that a single ejection of material followed by a rapid onset of the stellar wind and ionizing flux can reproduce the variety of clumps and filaments at different distances from the central star found in A30 and A78.
We present the results of H- and K-band VLT/SINFONI integral field spectroscopy of the ULIRG IRAS 19254-7245 (The Super-antennae), an interacting double galaxy system containing an embedded AGN. Deep K-band spectroscopy reveals PaAlpha arising in a w arped disc with position angle of 330 degree and an inclination i=40-55 degree. The kinemetric parameters derived for H2 are similar to PaAlpha. Two high-ionization emission lines, [SiVI] and [AlIX], are detected and we identify as [NiII] the line observed at 1.94 micron. Diluting non-stellar continuum, which was previously detected, has decayed, and the H-band continuum emission is consistent with pure stellar emission. Based on H2 emission line ratios it is likely that at the central 1-kpc region H2 is excited by UV fluorescence in dense clouds while shock excitation is dominant further out. This scenario is supported by very low PaAlpha to H2 line ratio detected outside the nuclear region and non-thermal ortho/para ratios (~2.0 - 2.5) close to the nucleus.
High-resolution UV spectra, obtained with HST and FUSE, enable us to analyse hot hydrogen-rich central stars in detail. Up to now, optical hydrogen and helium lines have been used to derive temperature and surface gravity. Those lines, however, are r ather insensitive; in particular, neutral helium lines have completely vanished in the hottest central stars. Therefore, we have concentrated on ionization balances of metals, which have a rich line spectrum in the UV, to establish a new temperature scale for our sample. Furthermore, we have determined abundances of light metals, which had been poorly known before. They show considerable variation from star to star. We present results of quantitative spectral analyses performed with non-LTE model atmospheres.
108 - M. Puech , H. Flores , M. Lehnert 2008
[Abridged] We have developed an end-to-end simulation to specify the science requirements of a MOAO-fed integral field spectrograph on either an 8m or 42m telescope. Our simulations re-scales observations of local galaxies or results from numerical s imulations of disk or interacting galaxies. For the current analysis, we limit ourselves to a local disk galaxy which exhibits simple rotation and a simulation of a merger. We have attempted to generalize our results by introducing the simple concepts of PSF contrast which is the amount of light polluting adjacent spectra which we find drives the smallest EE at a given spatial scale. The choice of the spatial sampling is driven by the scale-coupling, i.e., the relationship between the IFU pixel scale and the size of the features that need to be recovered by 3D spectroscopy in order to understand the nature of the galaxy and its substructure. Because the dynamical nature of galaxies are mostly reflected in their large-scale motions, a relatively coarse spatial resolution is enough to distinguish between a rotating disk and a major merger. Although we used a limited number of morpho-kinematic cases, our simulations suggest that, on a 42m telescope, the choice of an IFU pixel scale of 50-75 mas seems to be sufficient. Such a coarse sampling has the benefit of lowering the exposure time to reach a specific signal-to-noise as well as relaxing the performance of the MOAO system. On the other hand, recovering the full 2D-kinematics of z~4 galaxies requires high signal-to-noise and at least an EE of 34% in 150 mas (2 pixels of 75 mas). Finally, we carried out a similar study at z=1.6 with a MOAO-fed spectrograph for an 8m, and find that at least an EE of 30% at 0.25 arcsec spatial sampling is required to understand the nature of disks and mergers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا