ترغب بنشر مسار تعليمي؟ اضغط هنا

Gas and Dust Associated with the Strange, Isolated, Star BP Piscium

260   0   0.0 ( 0 )
 نشر من قبل Benjamin Zuckerman
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have carried out a multiwavelength observational campaign demonstrating some of the remarkable properties of the infrared-bright variable star BP Psc. Surrounded by a compact dusty, gaseous disk, this little-studied late-G (or early-K) type star emits about 75% of its detected energy flux at infrared wavelengths. Evidence for accretion of gas in conjunction with narrow bi-polar jets and Herbig-Haro objects is apparently consistent with classification of BP Psc as a pre-main sequence star, as postulated in most previous studies. If young, then BP Psc would be one of the nearest and oldest known classical T Tauri stars. However, such an evolutionary classification encounters various problems that are absent or much less severe if BP Psc is instead a luminosity class III post-main sequence star. In this case, it would be the first known example of a first ascent giant surrounded by a massive molecular disk with accompanying rapid gas accretion and prominent jets and HH objects. In this model, the genesis of the massive dusty gaseous disk could be a consequence of the envelopment of a low mass companion star. Properties in the disk may be conducive to the current formation of planets, a gigayear or more after the formation of BP Psc itself.



قيم البحث

اقرأ أيضاً

328 - C. Melis 2010
Spitzer IRS spectroscopy supports the interpretation that BP Piscium, a gas and dust enshrouded star residing at high Galactic latitude, is a first-ascent giant rather than a classical T Tauri star. Our analysis suggests that BP Pisciums spectral ene rgy distribution can be modeled as a disk with a gap that is opened by a giant planet. Modeling the rich mid-infrared emission line spectrum indicates that the solid-state emitting grains orbiting BP Piscium are primarily composed of ~75 K crystalline, magnesium-rich olivine; ~75 K crystalline, magnesium-rich pyroxene; ~200 K amorphous, magnesium-rich pyroxene; and ~200 K annealed silica (cristobalite). These dust grains are all sub-micron sized. The giant planet and gap model also naturally explains the location and mineralogy of the small dust grains in the disk. Disk shocks that result from disk-planet interaction generate the highly crystalline dust which is subsequently blown out of the disk mid-plane and into the disk atmosphere.
According to the recycling model, neutron stars in low-mass X-ray binaries were spun up to millisecond pulsars (MSPs), which indicates that all MSPs in the Galactic plane ought to be harbored in binaries. However, about $20%$ Galactic field MSPs are found to be solitary. To interpret this problem, we assume that the accreting neutron star in binaries may collapse and become a strange star when it reaches some critical mass limit. Mass loss and a weak kick induced by asymmetric collapse during the phase transition (PT) from neutron star to strange star can result in isolated MSPs. In this work, we use a population-synthesis code to examine the PT model. The simulated results show that a kick velocity of $sim60~{rm km~s}^{-1}$ can produce $sim6times10^3$ isolated MSPs and birth rate of $sim6.6times10^{-7} {rm ~yr}^{-1}$ in the Galaxy, which is approximately in agreement with predictions from observations. For the purpose of comparisons with future observation, we also give the mass distributions of radio and X-ray binary MSPs, along with the delay time distribution.
The star RZ Psc is one of the most enigmatic members of the UX Ori star family. It shows all properties that are typical for these stars (the light variability, high linear polarization in deep minima, the blueing effect) except for one: it lacks any signatures of youth. With the Li I line, as a rough estimate for the stellar age, we show that the lithium age of RZ Psc lies between the age of stars in the Pleiades (approximately 70 Myr) and the Orion (approximately 10 Myr) clusters. We also roughly estimated the age of RZ Psc based on the proper motion of the star using the Tycho-2 catalog. We found that the star has escaped from its assumed birthplace near to the Galactic plane about 30-40 Myr ago. We conclude that RZ Psc is a post-UXOr star, and its sporadic eclipses are caused by material from the debris disk.
We aim at determining the spatial distribution of the gas and dust in star-forming regions and address their relative abundances in quantitative terms. We also examine the dust opacity exponent beta for spatial and/or temporal variations. Using mappi ng observations of the very dense rho Oph A core, we examined standard 1D and non-standard 3D methods to analyse data of far-infrared and submillimeter (submm) continuum radiation. The resulting dust surface density distribution can be compared to that of the gas. The latter was derived from the analysis of accompanying molecular line emission, observed with Herschel from space and with APEX from the ground. As a gas tracer we used N2H+, which is believed to be much less sensitive to freeze-out than CO and its isotopologues. Radiative transfer modelling of the N2H+(J=3-2) and (J=6-5) lines with their hyperfine structure explicitly taken into account provides solutions for the spatial distribution of the column density N(H2), hence the surface density distribution of the gas. The gas-to-dust mass ratio is varying across the map, with very low values in the central regions around the core SM 1. The global average, =88, is not far from the canonical value of 100, however. In rho Oph A, the exponent beta of the power-law description for the dust opacity exhibits a clear dependence on time, with high values of 2 for the envelope-dominated emission in starless Class -1 sources to low values close to 0 for the disk-dominated emission in Class III objects. beta assumes intermediate values for evolutionary classes in between. Since beta is primarily controlled by grain size, grain growth mostly occurs in circumstellar disks. The spatial segregation of gas and dust, seen in projection toward the core centre, probably implies that, like C18O, also N2H+ is frozen onto the grains.
The erratically variable star RZ Piscium (RZ Psc) displays extreme optical dropout events and strikingly large excess infrared emission. To ascertain the evolutionary status of this intriguing star, we obtained observations of RZ Psc with the Europea n Space Agencys X-ray Multi-Mirror Mission (XMM-Newton), as well as high-resolution optical spectroscopy with the Hamilton Echelle on the Lick Shane 3 m telescope and with HIRES on the Keck I 10 m telescope. The optical spectroscopy data demonstrate that RZ Psc is a pre-main sequence star with an effective temperature of 5600 $pm$ 75 K and log g of 4.35 $pm$ 0.10. The ratio of X-ray to bolometric luminosity, log L$_{X}$/L$_{bol}$, lies in the range -3.7 to -3.2, consistent with ratios typical of young, solar-mass stars, thereby providing strong support for the young star status of RZ Psc. The Li absorption line strength of RZ Psc suggests an age in the range 30-50 Myr, which in turn implies that RZ Psc lies at a distance of $sim$170 pc. Adopting this estimated distance, we find the Galactic space velocity of RZ Psc to be similar to the space velocities of stars in young moving groups near the Sun. Optical spectral features indicative of activity and/or circumstellar material are present in our spectra over multiple epochs, which provide evidence for the presence of a significant mass of circumstellar gas associated with RZ Psc. We suggest that the destruction of one or more massive orbiting bodies has recently occurred within 1 au of the star, and we are viewing the aftermath of such an event along the plane of the orbiting debris.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا