ﻻ يوجد ملخص باللغة العربية
We studied the fraction and properties of bars in a sample of about 3000 galaxies extracted from SDSS-DR5. This represents a volume limited sample with galaxies located between redshift 0.01<z<0.04, absolute magnitude Mr>-20, and inclination i < 60. Interacting galaxies were excluded from the sample. The fraction of barred galaxies in our sample is 45%. We found that 32% of S0s, 55% of early-type spirals, and 52% of late-type spirals are barred galaxies. The bars in S0s galaxies are weaker than those in later-type galaxies. The bar length and galaxy size are correlated, being larger bars located in larger galaxies. Neither the bar strength nor bar length correlate with the local galaxy density. On the contrary, the bar properties correlate with the properties of their host galaxies. Galaxies with higher central light concentration host less and weaker bars.
We present the first study of bars in the local Universe, based on the Sloan Digitized Sky Survey (SDSS). The large sample of ~5000 local galaxies provides the largest study to date of local bars and minimizes the effect of cosmic variance. The sampl
(Abridge) Bars are very common in the centre of the disc galaxies, and they drive the evolution of their structure. A volume-limited sample of 2106 disc galaxies extracted from the Sloan Digital Sky Survey Data Release 5 was studied to derive the bar
In the local Universe, there is a handful of dwarf compact star-forming galaxies with extremely low oxygen abundances. It has been proposed that they are young, having formed a large fraction of their stellar mass during their last few hundred Myr. H
We estimate the current extinction-corrected H$alpha$ star formation rate (SFR) of the different morphological components that shape galaxies (bulges, bars, and disks). We use a multi-component photometric decomposition based on SDSS imaging to CALIF
The theory of structure formation predicts that galaxies form within extended massive dark matter halos built from smaller pieces that collided and merged, resulting in the hierarchy of galaxies, groups, and clusters observed today. Here we present c