ﻻ يوجد ملخص باللغة العربية
We show that as many as ~50 quasars with at least mJy-level expected flux density can be pre-selected as potential in-beam phase-reference targets for ASTRO-G. Most of them have never been imaged with VLBI. These sources are located around strong, compact calibrator sources that have correlated flux density >100 mJy on the longest VLBA baselines at 8.4 GHz. All the targets lie within 12 from the respective reference source. The basis of this selection is an efficient method to identify potential weak VLBI target quasars simply using optical and low-resolution radio catalogue data. The sample of these dominantly weak sources offers a good opportunity for a statistical study of their radio structure with unprecedented angular resolution at 8.4 GHz.
We apply an efficient selection method to identify potential weak Very Long Baseline Interferometry (VLBI) target quasars simply using optical (SDSS) and low-resolution radio (FIRST) catalogue data. Our search is restricted to within 12 from known co
One of the aims of next generation optical interferometric instrumentation is to be able to make use of information contained in the visibility phase to construct high dynamic range images. Radio and optical interferometry are at the two extremes of
Comet Interceptor is an ESA F-class mission expected to launch in 2028 on the same launcher as ESAs ARIEL mission. Comet Interceptors science payload consists of three spacecraft, a primary spacecraft that will carry two smaller probes to be released
We report the results of a phase-referencing study aimed at uncovering precession of the VLBI jet of BL Lac. The observations were conducted at 8, 15, 22, and 43 GHz and consist of seven epochs spanning about two years. We investigated the change in
We present the results of Very Long Baseline Interferometry (VLBI) observations using the phase reference technique to detect weak Active Galactic Nuclei (AGN) cores in the Virgo cluster. Our observations were carried out using the Korean VLBI Networ