ﻻ يوجد ملخص باللغة العربية
Evolutionary models for massive stars, accounting for rotational mixing effects, do not predict any core-processed material at the surface of B dwarfs with low rotational velocities. Contrary to theoretical expectations, we present a detailed and fully-homogeneous, NLTE abundance analysis of 20 early B-type dwarfs and (sub)giants that reveals the existence of a population of nitrogen-rich and boron-depleted, yet intrinsically slowly-rotating objects. The low-rotation rate of several of these stars is firmly established, either from the occurrence of phase-locked UV wind line-profile variations, which can be ascribed to rotational modulation, or from theoretical modelling in the pulsating variables. The observational data presently available suggest a higher incidence of chemical peculiarities in stars with a (weak) detected magnetic field. This opens the possibility that magnetic phenomena are important in altering the photospheric abundances of early B dwarfs, even for surface field strengths at the one hundred Gauss level. However, further spectropolarimetric observations are needed to assess the validity of this hypothesis.
We present results of a search for identification of modes responsible for the six most significant frequency peaks detected in the rapidly rotating SPB star $mu$ Eridani. All published and some unpublished photometric data are used in our new analys
We report the latest set of spectropolarimetric observations of the magnetic $beta$ Cep star $xi^1$ CMa. The new observations confirm the long-period model of Shultz et al. (2017), who proposed a rotational period of about 30 years and predicted that
It is thought that magnetic fields must be present in the interiors of stars to resolve certain discrepancies between theory and observation (e.g. angular momentum transport), but such fields are difficult to detect and characterise. Asteroseismology
We study the evidence for a diversity of formation processes in early-type galaxies by presenting the first complete volume-limited sample of slow rotators with both integral-field kinematics from the ATLAS3D Project and high spatial resolution photo
The powerful radiative winds of hot stars with strong magnetic fields are magnetically confined into large, corotating magnetospheres, which exert important influences on stellar evolution via rotational spindown and mass-loss quenching. They are det