ترغب بنشر مسار تعليمي؟ اضغط هنا

Spontaneous symmetry breakdown in fuzzy spheres

127   0   0.0 ( 0 )
 نشر من قبل Chitta Ranjan Das
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study and analyse the questions regarding breakdown of global symmetry on noncommutative sphere. We demonstrate this by considering a complex scalar field on a fuzzy sphere and isolating Goldstone modes. We discuss the role of nonlocal interactions present in these through geometrical considerations.



قيم البحث

اقرأ أيضاً

The behaviour of matrix string theory in the background of a type IIA pp wave at small string coupling, g_s << 1, is determined by the combination M g_s where M is a dimensionless parameter proportional to the strength of the Ramond-Ramond background . For M g_s << 1, the matrix string theory is conventional; only the degrees of freedom in the Cartan subalgebra contribute, and the theory reduces to copies of the perturbative string. For M g_s >> 1, the theory admits degenerate vacua representing fundamental strings blown up into fuzzy spheres with nonzero lightcone momenta. We determine the spectrum of small fluctuations around these vacua. Around such a vacuum all N-squared degrees of freedom are excited with comparable energies. The spectrum of masses has a spacing which is independent of the radius of the fuzzy sphere, in agreement with expected behaviour of continuum giant gravitons. Furthermore, for fuzzy spheres characterized by reducible representations of SU(2) and vanishing Wilson lines, the boundary conditions on the field are characterized by a set of continuous angles which shows that generically the blown up strings do not ``close.
64 - P.Cea , M.Consoli , L.Cosmai 1995
We present a precise lattice computation of the slope of the effective potential for massless $(lambdaPhi^4)_4$ theory in the region of bare parameters indicated by the Brahms analysis of lattice data. Our results confirm the existence on the lattice of a remarkable phase of $(lambdaPhi^4)_4$ where Spontaneous Symmetry Breaking is generated through ``dimensional transmutation. The resulting effective potential shows no evidence for residual self-interaction effects of the shifted `Higgs field $h(x)=Phi(x)-langlePhirangle$, as predicted by ``triviality, and cannot be reproduced in perturbation theory. Accordingly the mass of the Higgs particle, by itself, does not represent a measure of any observable interaction.
We investigate non-linear extensions of the holographic soft wall model proposed by Karch, Katz, Son and Stephanov [1] including non-minimal couplings in the five-dimensional action. The non-minimal couplings bring a new parameter $a_0$ which control s the transition between spontaneous and explicit symmetry breaking near the limit of massless quarks (the chiral limit). In the physical region (positive quark mass), we show that above a critical value of the parameter $a_0$ the chiral condensate $langle bar{q} q rangle$ is finite in the chiral limit, signifying spontaneous chiral symmetry breaking. This result is supported by the lightest states arising in the spectrum of the pseudoscalar mesons, which become massless in the chiral limit and are therefore intrepreted as Nambu-Goldstone bosons. Moreover, the decay constants of the pseudoscalar mesons also support this conclusion, as well as the Gell-Mann-Oakes-Renner (GOR) relation satisfied by the lightest states. We also calculate the spectrum of scalar, vector, and axial-vector mesons with their corresponding decay constants. We describe the evolution of masses and decay constants with the increasing of the quark mass and for the physical mass we compare our results against available experimental data. Finally, we do not find instabilities in our model for the physical region (positive quark mass).
The IKKT matrix model is a promising candidate for a nonperturbative formulation of superstring theory, in which spacetime is conjectured to emerge dynamically from the microscopic matrix degrees of freedom in the large-$N$ limit. Indeed in the Loren tzian version, Monte Carlo studies suggested the emergence of (3+1)-dimensional expanding space-time. Here we study the Euclidean version instead, and investigate an alternative scenario for dynamical compactification of extra dimensions via the spontaneous symmetry breaking (SSB) of 10D rotational symmetry. We perform numerical simulations based on the complex Langevin method (CLM) in order to avoid a severe sign problem. Furthermore, in order to avoid the singular-drift problem in the CLM, we deform the model and determine the SSB pattern as we vary the deformation parameter. From these results, we conclude that the original model has an SO(3) symmetric vacuum, which is consistent with previous results obtained by the Gaussian expansion method (GEM). We also apply the GEM to the deformed matrix model and find consistency with the results obtained by the CLM.
We calculate the exact eigenvalues of the adjoint scalar fields in the massive vacua of N=1* SUSY Yang-Mills with gauge group SU(N). This provides a field theory prediction for the distribution of D3 brane charge in the AdS dual. We verify the propos al of Polchinski and Strassler that the D3-branes lie on a fuzzy sphere in the supergravity limit and determine the corrections to this distribution due to worldsheet and quantum effects. The calculation also provides several new results concerning the equilibrium configurations of the N-body Calogero-Moser Hamiltonian.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا