ﻻ يوجد ملخص باللغة العربية
Cosmic shear offers a remarkbly clean way to measure the equation of state of the Universe and its evolution. Resolution over a wide field is paramount, and Antarctica offers unique possibilities in this respect. There is an order of magnitude gain in speed over temperate sites, or a factor three in surface density. This means that PILOT outperforms much larger telescopes elsewhere, and can compete with the proposed DUNE space mission. Keywords: Antarctic astronomy, Surveys, Adaptive optics, Weak lensing
With the advent of large-scale weak lensing surveys there is a need to understand how realistic, scale-dependent systematics bias cosmic shear and dark energy measurements, and how they can be removed. Here we describe how spatial variations in the a
Gravitational weak shear produced by large-scale structures of the universe induces a correlated ellipticity distribution of distant galaxies. The amplitude and evolution with angular scale of the signal depend on cosmological models and can be inver
The first detections of cosmic shear signal reported recently by 4 independent groups cover angular scales between one and 10 arcmin. On those scales, the cosmic shear is a signature of non-linear perturbations, like groups and clusters of galaxies.
We introduce an optimized data vector of cosmic shear measures (N). This data vector has high information content, is not sensitive against B-mode contamination and only shows small correlation between data points of different angular scales. We show
The recent detections of cosmic shear signal announced by several groups have demonstrated the feasibility of this challenging program and convinced astro- nomers of its potential for cosmology. Cosmic shear analysis demands to handle Gigabytes of da