The scaling laws of the achievable communication rates and the corresponding upper bounds of distributed reception in the presence of an interfering signal are investigated. The scheme includes one transmitter communicating to a remote destination via two relays, which forward messages to the remote destination through reliable links with finite capacities. The relays receive the transmission along with some unknown interference. We focus on three common settings for distributed reception, wherein the scaling laws of the capacity (the pre-log as the power of the transmitter and the interference are taken to infinity) are completely characterized. It is shown in most cases that in order to overcome the interference, a definite amount of information about the interference needs to be forwarded along with the desired message, to the destination. It is exemplified in one scenario that the cut-set upper bound is strictly loose. The results are derived using the cut-set along with a new bounding technique, which relies on multi letter expressions. Furthermore, lattices are found to be a useful communication technique in this setting, and are used to characterize the scaling laws of achievable rates.