ترغب بنشر مسار تعليمي؟ اضغط هنا

Relationship between scattering matrix and spectrum of quantum graphs

134   0   0.0 ( 0 )
 نشر من قبل Gregory Berkolaiko
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the equivalence between spectral characteristics of the Laplace operator on a metric graph, and the associated unitary scattering operator. We prove that the statistics of level spacings, and moments of observations in the eigenbases coincide in the limit that all bond lengths approach a positive constant value.



قيم البحث

اقرأ أيضاً

We give an estimate of the quantum variance for $d$-regular graphs quantised with boundary scattering matrices that prohibit back-scattering. For families of graphs that are expanders, with few short cycles, our estimate leads to quantum ergodicity f or these families of graphs. Our proof is based on a uniform control of an associated random walk on the bonds of the graph. We show that recent constructions of Ramanujan graphs, and asymptotically almost surely, random $d$-regular graphs, satisfy the necessary conditions to conclude that quantum ergodicity holds.
We describe a new class of scattering matrices for quantum graphs in which back-scattering is prohibited. We discuss some properties of quantum graphs with these scattering matrices and explain the advantages and interest in their study. We also prov ide two methods to build the vertex scattering matrices needed for their construction.
We connect the Grover walk with sinks to the Grover walk with tails. The survival probability of the Grover walk with sinks in the long time limit is characterized by the centered generalized eigenspace of the Grover walk with tails. The centered eig enspace of the Grover walk is the attractor eigenspace of the Grover walk with sinks. It is described by the persistent eigenspace of the underlying random walk whose support has no overlap to the boundaries of the graph and combinatorial flow in the graph theory.
We propose to analyse the statistical properties of a sequence of vectors using the spectrum of the associated Gram matrix. Such sequences arise e.g. by the repeated action of a deterministic kicked quantum dynamics on an initial condition or by a ra ndom process. We argue that, when the number of time-steps, suitably scaled with respect to $hbar$, increases, the limiting eigenvalue distribution of the Gram matrix reflects the possible quantum chaoticity of the original system as it tends to its classical limit. This idea is subsequently applied to study the long-time properties of sequences of random vectors at the time scale of the dimension of the Hilbert space of available states.
We apply the framework developed in the preceding paper in this series (Smilansky 2017 J. Phys. A: Math. Theor. 50, 215301) to compute the time-delay distribution in the scattering of ultra short radio frequency pulses on complex networks of transmis sion lines which are modeled by metric (quantum) graphs. We consider wave packets which are centered at high wave number and comprise many energy levels. In the limit of pulses of very short duration we compute upper and lower bounds to the actual time-delay distribution of the radiation emerging from the network using a simplified problem where time is replaced by the discrete count of vertex-scattering events. The classical limit of the time-delay distribution is also discussed and we show that for finite networks it decays exponentially, with a decay constant which depends on the graph connectivity and the distribution of its edge lengths. We illustrate and apply our theory to a simple model graph where an algebraic decay of the quantum time-delay distribution is established.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا