ترغب بنشر مسار تعليمي؟ اضغط هنا

High Performance Cooperative Transmission Protocols Based on Multiuser Detection and Network Coding

109   0   0.0 ( 0 )
 نشر من قبل Zhu Han
 تاريخ النشر 2008
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Cooperative transmission is an emerging communication technique that takes advantage of the broadcast nature of wireless channels. However, due to low spectral efficiency and the requirement of orthogonal channels, its potential for use in future wireless networks is limited. In this paper, by making use of multiuser detection (MUD) and network coding, cooperative transmission protocols with high spectral efficiency, diversity order, and coding gain are developed. Compared with the traditional cooperative transmission protocols with single-user detection, in which the diversity gain is only for one source user, the proposed MUD cooperative transmission protocols have the merit that the improvement of one users link can also benefit the other users. In addition, using MUD at the relay provides an environment in which network coding can be employed. The coding gain and high diversity order can be obtained by fully utilizing the link between the relay and the destination. From the analysis and simulation results, it is seen that the proposed protocols achieve higher diversity gain, better asymptotic efficiency, and lower bit error rate, compared to traditional MUD schemes and to existing cooperative transmission protocols. From the simulation results, the performance of the proposed scheme is near optimal as the performance gap is 0.12dB for average bit error rate (BER) 10^{-6} and 1.04dB for average BER 10^(-3), compared to two performance upper bounds.



قيم البحث

اقرأ أيضاً

This paper investigates noncoherent detection in a two-way relay channel operated with physical layer network coding (PNC), assuming FSK modulation and short-packet transmissions. For noncoherent detection, the detector has access to the magnitude bu t not the phase of the received signal. For conventional communication in which a receiver receives the signal from a transmitter only, the phase does not affect the magnitude, hence the performance of the noncoherent detector is independent of the phase. PNC, however, is a multiuser system in which a receiver receives signals from multiple transmitters simultaneously. The relative phase of the signals from different transmitters affects the received signal magnitude through constructive-destructive interference. In particular, for good performance, the noncoherent detector in PNC must take into account the influence of the relative phase on the signal magnitude. Building on this observation, this paper delves into the fundamentals of PNC noncoherent detector design. To avoid excessive overhead, we do away from preambles. We show how the relative phase can be deduced directly from the magnitudes of the received data symbols. Numerical results show that our detector performs nearly as well as a fictitious optimal detector that has perfect knowledge of the channel gains and relative phase.
61 - Jindan Xu , Wei Xu , Fengkui Gong 2017
Low-resolution digital-to-analog converters (DACs) and analog-to-digital converters (ADCs) are considered to reduce cost and power consumption in multiuser massive multiple-input multiple-output (MIMO). Using the Bussgang theorem, we derive the asymp totic downlink achievable rate w.r.t the resolutions of both DACs and ADCs, i.e., $b_{DA}$ and $b_{AD}$, under the assumption of large antenna number, $N$, and fixed user load ratio, $beta$. We characterize the rate loss caused by finite-bit-resolution converters and reveal that the quantization distortion is ignorable at low signal-to-noise ratio (SNR) even with low-resolution converters at both sides. While for maintaining the same rate loss at high SNR, it is discovered that one-more-bit DAC resolution is needed when more users are scheduled with $beta$ increased by four times. More specifically for one-bit rate loss requirement, $b_{DA}$ can be set by $leftlceil b_{AD}+frac{1}{2}logbeta rightrceil$ given $b_{AD}$. Similar observations on ADCs are also obtained with numerical verifications.
We present sufficient conditions for multicasting a set of correlated sources over cooperative networks. We propose joint source-Wyner-Ziv encoding/sliding-window decoding scheme, in which each receiver considers an ordered partition of other nodes. Subject to this scheme, we obtain a set of feasibility constraints for each ordered partition. We consolidate the results of different ordered partitions by utilizing a result of geometrical approach to obtain the sufficient conditions. We observe that these sufficient conditions are indeed necessary conditions for Aref networks. As a consequence of the main result, we obtain an achievable rate region for networks with multicast demands. Also, we deduce an achievability result for two-way relay networks, in which two nodes want to communicate over a relay network.
Parking lots (PLs) are usually full with cars. If these cars are formed into a self-organizing vehicular network, they can be new kind of road side units (RSUs) in urban area to provide communication data forwarding between mobile terminals nearby an d a base station. However cars in PLs can leave at any time, which is neglected in the existing studies. In this paper, we investigate relay cooperative communication based on parked cars in PLs. Taking the impact of the cars leaving behavior into consideration, we derive the expressions of outage probability in a two-hop cooperative communication and its link capacity. Finally, the numerical results show that the impact of a cars arriving time is greater than the impact of the duration the car has parked on outage probability.
This paper deals with the problem of multicasting a set of discrete memoryless correlated sources (DMCS) over a cooperative relay network. Necessary conditions with cut-set interpretation are presented. A emph{Joint source-Wyner-Ziv encoding/sliding window decoding} scheme is proposed, in which decoding at each receiver is done with respect to an ordered partition of other nodes. For each ordered partition a set of feasibility constraints is derived. Then, utilizing the sub-modular property of the entropy function and a novel geometrical approach, the results of different ordered partitions are consolidated, which lead to sufficient conditions for our problem. The proposed scheme achieves operational separation between source coding and channel coding. It is shown that sufficient conditions are indeed necessary conditions in two special cooperative networks, namely, Aref network and finite-field deterministic network. Also, in Gaussian cooperative networks, it is shown that reliable transmission of all DMCS whose Slepian-Wolf region intersects the cut-set bound region within a constant number of bits, is feasible. In particular, all results of the paper are specialized to obtain an achievable rate region for cooperative relay networks which includes relay networks and two-way relay networks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا