ﻻ يوجد ملخص باللغة العربية
We study two sorts of actions on the space of conjugacy classes of irreducible $SU_2$-representations of a knot group. One of them is an involution which comes from the algebraic structure of $SU_2$ and the other is the action by the outer automorphism group of the knot group. In particular, we consider them on an 1-dimensional smooth part of the space, which is canonically oriented and metrized via a Reidemeister torsion volume form. As an application we show that the Reidemeister torsion function on the 1-dimensional subspace has symmetry about the metrization.
We study an invariant of a 3-manifold which consists of Reidemeister torsion for linear representations which pass through a finite group. We show a Dehn surgery formula on this invariant and compute that of a Seifert manifold over $S^2$. As a conseq
We introduce non-acyclic $PGL_n(mathbb{C})$-torsion of a 3-manifold with toroidal boundary as an extension of J. Portis $PGL_2(mathbb{C})$-torsion, and present an explicit formula of the $PGL_n(mathbb{C})$-torsion of a mapping torus for a surface wit
A knot k in a closed orientable 3-manifold is called nonsimple if the exterior of k possesses a properly embedded essential surface of nonnegative Euler characteristic. We show that if k is a nonsimple prime tunnel number one knot in a lens space M (
We prove that any diagram of the unknot with c crossings may be reduced to the trivial diagram using at most (236 c)^{11} Reidemeister moves. Moreover, every diagram in this sequence has at most (7 c)^2 crossings. We also prove a similar theorem for
We recursively determine the homotopy type of the space of any irreducible framed link in the 3-sphere, modulo rotations. This leads us to the homotopy type of the space of any knot in the solid torus, thus answering a question posed by Arnold. We si