We consider a higher dimensional gravity theory with a negative kinetic energy scalar field and a cosmological constant. We find that the theory admits an exact cosmological solution for the scale factor of our universe. It has the feature that the universe undergoes a continuous transition from deceleration to acceleration at some finite time. This transition time can be interpreted as that of recent acceleration of our universe.
We investigate the space-time of a global monopole in a five dimensional space-time in presence of the cosmological term. Also the gravitational properties of the monopole solution are discussed.
We investigate a cosmological model resulting from a dimensional reduction of the higher-dimensional dRGT massive gravity. By using the Kaluza-Klein dimensional reduction, we obtain an effective four-dimensional massive gravity theory with a scalar f
ield. It is found that the resulting theory corresponds to a combined description of mass-varying massive gravity and quasi-dilaton massive gravity. By analyzing the cosmological solution, we found that it is possible to obtain the late-time expansion of the universe due to the graviton mass. By using a dynamical system approach, we found regions of model parameters for which the late-time expansion of the universe is a stable fixed point. Moreover, this also provides a mechanism to stabilize the extra dimensions.
We consider rotating wormhole solutions supported by a complex phantom scalar field with a quartic self-interaction, where the phantom field induces the rotation of the spacetime. The solutions are regular and asymptotically flat. A subset of solutio
ns describing static but not spherically symmetric wormholes is also obtained.
I discuss the dark energy characterized by the violation of the null energy condition ($varrho + p geq 0$), dubbed phantom. Amazingly, it is admitted by the current astronomical data from supernovae. We discuss both classical and quantum cosmological
models with phantom as a source of matter and present the phenomenon called phantom duality.
We present a five dimensional global monopole within the framework of Lyra geometry. Also the gravitational field of the monopole solution has been considered.