ﻻ يوجد ملخص باللغة العربية
This paper studies the effect of discretizing the parametrization of a dictionary used for Matching Pursuit decompositions of signals. Our approach relies on viewing the continuously parametrized dictionary as an embedded manifold in the signal space on which the tools of differential (Riemannian) geometry can be applied. The main contribution of this paper is twofold. First, we prove that if a discrete dictionary reaches a minimal density criterion, then the corresponding discrete MP (dMP) is equivalent in terms of convergence to a weakened hypothetical continuous MP. Interestingly, the corresponding weakness factor depends on a density measure of the discrete dictionary. Second, we show that the insertion of a simple geometric gradient ascent optimization on the atom dMP selection maintains the previous comparison but with a weakness factor at least two times closer to unity than without optimization. Finally, we present numerical experiments confirming our theoretical predictions for decomposition of signals and images on regular discretizations of dictionary parametrizations.
Low rank tensor learning, such as tensor completion and multilinear multitask learning, has received much attention in recent years. In this paper, we propose higher order matching pursuit for low rank tensor learning problems with a convex or a nonc
Current orthogonal matching pursuit (OMP) algorithms calculate the correlation between two vectors using the inner product operation and minimize the mean square error, which are both suboptimal when there are non-Gaussian noises or outliers in the o
In this paper we present the work related to the parameters identification for Abrasive Waterjet Milling (AWJM) model that appears as an ill-posed inverse problem. The necessity of studying this problem comes from the industrial milling applications
Orthogonal matching pursuit (OMP) is one of the mainstream algorithms for signal reconstruction/approximation. It plays a vital role in the development of compressed sensing theory, and it also acts as a driving force for the development of other heu
We study local and global approximations of smooth nets of curvature lines and smooth conjugate nets by respective discrete nets (circular nets and planar quadrilateral nets) with infinitesimal quads. It is shown that choosing the points of discrete