ترغب بنشر مسار تعليمي؟ اضغط هنا

CN in prestellar cores

184   0   0.0 ( 0 )
 نشر من قبل Pierre Hily-Blant
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Pierre Hily-Blant




اسأل ChatGPT حول البحث

Determining the structure of and the velocity field in prestellar cores is essential to understanding protostellar evolution.} {We have observed the dense prestellar cores L 1544 and L 183 in the $N = 1 to 0$ rotational transition of CN and thcn in order to test whether CN is depleted in the high--density nuclei of these cores.} {We have used the IRAM 30 m telescope to observe along the major and minor axes of these cores. We compare these observations with the 1 mm dust emission, which serves as a proxy for the hydrogen column density.}{We find that while CNjone is optically thick, the distribution of thcnjone intensity follows the dust emission well, implying that the CN abundance does not vary greatly with density. We derive an abundance ratio of $rm [CN]/[hh]=dix{-9}$ in L 183 and 1-3tdix{-9} in L 1544, which, in the case of L 183, is similar to previous estimates obtained by sampling lower--density regions of the core.}{We conclude that CN is not depleted towards the high--density peaks of these cores and thus behaves like the N-containing molecules nhp and hhh. CN is, to our knowledge, the first C--containing molecule to exhibit this characteristic.



قيم البحث

اقرأ أيضاً

121 - M. Padovani 2009
We study the abundance of CCH in prestellar cores both because of its role in the chemistry and because it is a potential probe of the magnetic field. We also consider the non-LTE behaviour of the N=1-0 and N=2-1 transitions of CCH and improve curren t estimates of the spectroscopic constants of CCH. We used the IRAM 30m radiotelescope to map the N=1-0 and N=2-1 transitions of CCH towards the prestellar cores L1498 and CB246. Towards CB246, we also mapped the 1.3 mm dust emission, the J=1-0 transition of N2H+ and the J=2-1 transition of C18O. We used a Monte Carlo radiative transfer program to analyse the CCH observations of L1498. We derived the distribution of CCH column densities and compared with the H2 column densities inferred from dust emission. We find that while non-LTE intensity ratios of different components of the N=1-0 and N=2-1 lines are present, they are of minor importance and do not impede CCH column density determinations based upon LTE analysis. Moreover, the comparison of our Monte-Carlo calculations with observations suggest that the non-LTE deviations can be qualitatively understood. For L1498, our observations in conjunction with the Monte Carlo code imply a CCH depletion hole of radius 9 x 10^{16} cm similar to that found for other C-containing species. We briefly discuss the significance of the observed CCH abundance distribution. Finally, we used our observations to provide improved estimates for the rest frequencies of all six components of the CCH(1-0) line and seven components of CCH(2-1). Based on these results, we compute improved spectroscopic constants for CCH. We also give a brief discussion of the prospects for measuring magnetic field strengths using CCH.
The CS molecule is known to be absorbed onto dust in the cold and dense conditions, causing it to get significantly depleted in the central region of cores. This study is aimed to investigate the depletion of the CS molecule using the optically thin C$^{34}$S molecular line observations. We mapped five prestellar cores, L1544, L1552, L1689B, L694-2, and L1197 using two molecular lines, C$^{34}$S $(J=2-1)$ and N$_2$H$^+$ $(J=1-0)$ with the NRO 45-m telescope, doubling the number of cores where the CS depletion was probed using C$^{34}$S. In most of our targets, the distribution of C$^{34}$S emission shows features that suggest that the CS molecule is generally depleted in the center of the prestellar cores. The radial profile of the CS abundance with respect to H$_2$ directly measured from the CS emission and the Herschel dust emission indicates that the CS molecule is depleted by a factor of $sim$3 toward the central regions of the cores with respect to their outer regions. The degree of the depletion is found to be even more enhanced by an order of magnitude when the contaminating effect introduced by the presence of CS molecules in the surrounding envelope that lie along the line-of-sight is removed. Except for L1197 which is classified as relatively the least evolved core in our targets based on its observed physical parameters, we found that the remaining four prestellar cores are suffering from significant CS depletion at their central region regardless of the relative difference in their evolutionary status.
We investigate general aspects of molecular line formation under conditions which are typical of prestellar cores. Focusing on simple linear molecules, we study formation of their rotational lines by radiative transfer simulations. We present a therm alization diagram to show the effects of collisions and radiation on the level excitation. We construct a detailed scheme (contribution chart) to illustrate the formation of emission line profiles. This chart can be used as an efficient tool to identify which parts of the cloud contribute to a specific line profile. We show how molecular line characteristics for uniform model clouds depend on hydrogen density, molecular column density, and kinetic temperature. The results are presented in a 2D plane to illustrate cooperative effects of the physical factors. We also use a core model with a non-uniform density distribution and chemical stratification to study the effects of cloud contraction and rotation on spectral line maps. We discuss the main issues that should be taken into account when dealing with interpretation and simulation of observed molecular lines.
We studied the abundance of HCN, H13CN, and HN13C in a sample of prestellar cores, in order to search for species associated with high density gas. We used the IRAM 30m radiotelescope to observe along the major and the minor axes of L1498, L1521E, an d TMC 2, three cores chosen on the basis of their CO depletion properties. We mapped the J=1-0 transition of HCN, H13CN, and HN13C towards the source sample plus the J=1-0 transition of N2H+ and the J=2-1 transition of C18O in TMC 2. We used two different radiative transfer codes, making use of recent collisional rate calculations, in order to determine more accurately the excitation temperature, leading to a more exact evaluation of the column densities and abundances. We find that the optical depths of both H13CN(1-0) and HN13C(1-0) are non-negligible, allowing us to estimate excitation temperatures for these transitions in many positions in the three sources. The observed excitation temperatures are consistent with recent computations of the collisional rates for these species and they correlate with hydrogen column density inferred from dust emission. We conclude that HCN and HNC are relatively abundant in the high density zone, n(H2) about 10^5 cm-3, where CO is depleted. The relative abundance [HNC]/[HCN] differs from unity by at most 30 per cent consistent with chemical expectations. The three hyperfine satellites of HCN(1-0) are optically thick in the regions mapped, but the profiles become increasingly skewed to the blue (L1498 and TMC 2) or red (L1521E) with increasing optical depth suggesting absorption by foreground layers.
100 - Aurore Bacmann 2003
We report the detection of D2CO in a sample of starless dense cores, in which we previously measured the degree of CO depletion. The deuterium fractionation is found extremely high, [D2CO]/[H2CO] ~ 1-10 %, similar to that reported in low-mass protost ars. This provides convincing evidence that D2CO is formed in the cold pre-stellar cores, and later desorbed when the gas warms up in protostars. We find that the cores with the highest CO depletions have also the largest [D2CO]/[H2CO] ratios, supporting the theoretical prediction that deuteration increases with increasing CO depletion.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا