ﻻ يوجد ملخص باللغة العربية
Mass segregation stands as one of the most robust features of the dynamical evolution of self-gravitating star clusters. In this paper we formulate parametrised models of mass segregated star clusters in virial equilibrium. To this purpose we introduce mean inter-particle potentials for statistically described unsegregated systems and suggest a single-parameter generalisation of its form which gives a mass-segregated state. We describe an algorithm for construction of appropriate star cluster models. Their stability over several crossing-times is verified by following the evolution by means of direct N-body integration.
ALMA observations of the Serpens South star-forming region suggest that stellar protoclusters may be completely mass segregated at birth. Independent observations also suggest that embedded clusters form segregated by mass. As the primordial mass seg
Based on the gravitational redshift, one prediction of Einsteins general relativity theory, of broad optical emission lines in active galactic nuclei (AGNs), a new method is proposed to estimate the virial factors $f$ in measuring black hole masses $
We introduce a fundamental restriction on the strain energy function and stress tensor for initially stressed elastic solids. The restriction applies to strain energy functions $W$ that are explicit functions of the elastic deformation gradient $math
We use UBVI,Ha images of the Whirlpool galaxy, M51, taken with the ACS and WFPC2 cameras on the Hubble Space Telescope (HST) to select star clusters, and to estimate their masses and ages by comparing their observed colors with predictions from popul
Continuum emissions from dust grains are used as a general probe to constrain the initial physical conditions of molecular dense cores where new stars may born. To get as much information as possible from dust emissions, we have developed a tool, nam