ترغب بنشر مسار تعليمي؟ اضغط هنا

A generalized Cahn-Hilliard equation for biological applications

598   0   0.0 ( 0 )
 نشر من قبل Evgeniy Khain
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recently we considered a stochastic discrete model which describes fronts of cells invading a wound cite{KSS}. In the model cells can move, proliferate, and experience cell-cell adhesion. In this work we focus on a continuum description of this phenomenon by means of a generalized Cahn-Hilliard equation (GCH) with a proliferation term. As in the discrete model, there are two interesting regimes. For subcritical adhesion, there are propagating pulled fronts, similarly to those of Fisher-Kolmogorov equation. The problem of front velocity selection is examined, and our theoretical predictions are in a good agreement with a numerical solution of the GCH equation. For supercritical adhesion, there is a nontrivial transient behavior, where density profile exhibits a secondary peak. To analyze this regime, we investigated relaxation dynamics for the Cahn-Hilliard equation without proliferation. We found that the relaxation process exhibits self-similar behavior. The results of continuum and discrete models are in a good agreement with each other for the different regimes we analyzed.



قيم البحث

اقرأ أيضاً

Pair interactions between active particles need not follow Newtons third law. In this work we propose a continuum model of pattern formation due to non-reciprocal interaction between multiple species of scalar active matter. The classical Cahn-Hillia rd model is minimally modified by supplementing the equilibrium Ginzburg-Landau dynamics with particle number conserving currents which cannot be derived from a free energy, reflecting the microscopic departure from action-reaction symmetry. The strength of the asymmetry in the interaction determines whether the steady state exhibits a macroscopic phase separation or a traveling density wave displaying global polar order. The latter structure, which is equivalent to an active self-propelled smectic phase, coarsens via annihilation of defects, whereas the former structure undergoes Ostwald ripening. The emergence of traveling density waves, which is a clear signature of broken time-reversal symmetry in this active system, is a generic feature of any multi-component mixture with microscopic non-reciprocal interactions.
We consider the Cahn-Hilliard equation in one space dimension, perturbed by the derivative of a space and time white noise of intensity $epsilon^{frac 12}$, and we investigate the effect of the noise, as $epsilon to 0$, on the solutions when the init ial condition is a front that separates the two stable phases. We prove that, given $gamma< frac 23$, with probability going to one as $epsilon to 0$, the solution remains close to a front for times of the order of $epsilon^{-gamma}$, and we study the fluctuations of the front in this time scaling. They are given by a one dimensional continuous process, self similar of order $frac 14$ and non Markovian, related to a fractional Brownian motion and for which a couple of representations are given.
We prove existence, uniqueness, regularity and separation properties for a nonlocal Cahn-Hilliard equation with a reaction term. We deal here with the case of logarithmic potential and degenerate mobility as well an uniformly lipschitz in $u$ reaction term $g(x,t,u).$
The Cahn--Hilliard equation is a classic model of phase separation in binary mixtures that exhibits spontaneous coarsening of the phases. We study the Cahn--Hilliard equation with an imposed advection term in order to model the stirring and eventual mixing of the phases. The main result is that if the imposed advection is sufficiently mixing then no phase separation occurs, and the solution instead converges exponentially to a homogeneous mixed state. The mixing effectiveness of the imposed drift is quantified in terms of the dissipation time of the associated advection-hyperdiffusion equation, and we produce examples of velocity fields with a small dissipation time. We also study the relationship between this quantity and the dissipation time of the standard advection-diffusion equation.
We consider a Cahn-Hilliard equation which is the conserved gradient flow of a nonlocal total free energy functional. This functional is characterized by a Helmholtz free energy density, which can be of logarithmic type. Moreover, the spatial interac tions between the different phases are modeled by a singular kernel. As a consequence, the chemical potential $mu$ contains an integral operator acting on the concentration difference $c$, instead of the usual Laplace operator. We analyze the equation on a bounded domain subject to no-flux boundary condition for $mu$ and by assuming constant mobility. We first establish the existence and uniqueness of a weak solution and some regularity properties. These results allow us to define a dissipative dynamical system on a suitable phase-space and we prove that such a system has a (connected) global attractor. Finally, we show that a Neumann-like boundary condition can be recovered for $c$, provided that it is supposed to be regular enough.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا