ﻻ يوجد ملخص باللغة العربية
In this work we use a sample of 318 radio-quiet quasars (RQQ) to investigate the dependence of the ratio of optical/UV flux to X-ray flux, alpha_ox, and the X-ray photon index, Gamma_X, on black hole mass, UV luminosity relative to Eddington, and X-ray luminosity relative to Eddington. Our sample is drawn from the SDSS, with X-ray data from ROSAT and Chandra, and optical data mostly from the SDSS; 153 of these sources have estimates of Gamma_X from Chandra. We estimate M_BH using standard estimates derived from the Hbeta, Mg II, and C IV broad emission lines. Our sample spans a broad range in black hole mass (10^6 < M_BH / M_Sun < 10^10) and redshift (z < 4.8). We find that alpha_ox increases with increasing M_BH and L_UV / L_Edd, and decreases with increasing L_X / L_Edd. In addition, we confirm the correlation seen in previous studies between Gamma_X and M_BH and both L_UV / L_Edd and L_X / L_Edd; however, we also find evidence that the dependence of Gamma_X of these quantities is not monotonic, changing sign at M_BH ~ 3 x 10^8 M_Sun. We argue that the alpha_ox correlations imply that the fraction of bolometric luminosity emitted by the accretion disk, as compared to the corona, increases with increasing accretion rate relative to Eddington. In addition, we argue that the Gamma_X trends are caused by a dependence of X-ray spectral index on accretion rate. We discuss our results within the context of accretion models with comptonizing corona, and discuss the implications of the alpha_ox correlations for quasar feedback. To date, this is the largest study of the dependence of RQQ X-ray parameters on black hole mass and related quantities, and the first to attempt to correct for the large statistical uncertainty in the broad line mass estimates.
We have examined a sample of 13 sub-Eddington supermassive black holes hosted by galaxies spanning a variety of morphological classifications to further understand the empirical fundamental plane of black hole activity. This plane describes black hol
This paper estimates the specific accretion-rate distribution of AGN using a sample of 4821 X-ray sources from both deep and shallow surveys. The specific accretion-rate distribution is defined as the probability of a galaxy with a given stellar mass
In order to investigate the dependence of quasar variability on fundamental physical parameters like black hole mass, we have matched quasars from the QUEST1 Variability Survey with broad-lined objects from the Sloan Digital Sky Survey. The matched s
Nuclear burning and its dependence on the mass accretion rate are fundamental ingredients for describing the complicated observational phenomenology of neutron stars in binary systems. Motivated by high quality burst rate data emerging from large sta
We exploit the 7 Ms textit{Chandra} observations in the chandra,Deep Field-South (mbox{CDF-S}), the deepest X-ray survey to date, coupled with CANDELS/GOODS-S data, to measure the total X-ray emission arising from 2076 galaxies at $3.5leq z < 6.5$. T