ترغب بنشر مسار تعليمي؟ اضغط هنا

Absolute emission rates of Spontaneous Parametric Down Conversion into single transverse Gaussian modes

175   0   0.0 ( 0 )
 نشر من قبل Christian Kurtsiefer
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We provide an estimate on the absolute values of the emission rate of photon pairs produced by spontaneous parametric down conversion in a bulk crystal when all interacting fields are in single transverse Gaussian modes. Both collinear and non-collinear configurations are covered, and we arrive at a fully analytical expression for the collinear case. Our results agree reasonably well with values found in typical experiments, which allows this model to be used for understanding the dependency on the relevant experimental parameters.



قيم البحث

اقرأ أيضاً

Spontaneous Parametric Down-Conversion (SPDC), also known as parametric fluorescence, parametric noise, parametric scattering and all various combinations of the abbreviation SPDC, is a non-linear optical process where a photon spontaneously splits i nto two other photons of lower energies. One would think that this article is about particle physics and yet it is not, as this process can occur fairly easily on a day to day basis in an optics laboratory. Nowadays, SPDC is at the heart of many quantum optics experiments for applications in quantum cryptography, quantum simulation, quantum metrology but also for testing fundamentals laws of physics in quantum mechanics. In this article, we will focus on the physics of this process and highlight few important properties of SPDC. There will be two parts: a first theoretical one showing the particular quantum nature of SPDC and the second part, more experimental and in particular focusing on applications of parametric down-conversion. This is clearly a non-exhaustive article about parametric down-conversion as there is a tremendous literature on the subject, but it gives the necessary first elements needed for a novice student or researcher to work on SPDC sources of light.
Miniaturised entangled photon sources are highly demanded for the development of integrated quantum photonics. Since the invention of subwavelength optical metasurfaces and their successes at replacing bulky optical components, the possibility of imp lementing entangled photon sources on such devices is actively investigated. Here, as a first step towards the development of quantum optical metasurfaces (QOM), we demonstrate photon pair generation via spontaneous parametric down-conversion (SPDC) from subwavelength films. We achieved photon pair generation with a high coincidence-to-accidental ratio in lithium niobate and gallium phosphide nanofilms. In addition, we have measured the SPDC frequency spectrum via fibre spectroscopy, obtaining photon pairs with a spectral bandwidth of 500;nm, limited only by the overall detection efficiency. Moreover, we have observed the vacuum field enhancement due to a Fabry-Perot resonance inside the nonlinear films. Our experiments lay the groundwork for the future development of flat SPDC sources, including QOM.
We present an experimental characterization of the statistics of multiple photon pairs produced by spontaneous parametric down-conversion realized in a nonlinear medium pumped by high-energy ultrashort pulses from a regenerative amplifier. The photon number resolved measurement has been implemented with the help of a fiber loop detector. We introduce an effective theoretical description of the observed statistics based on parameters that can be assigned direct physical nterpretation. These parameters, determined for our source from the collected experimental data, characterize the usefulness of down-conversion sources in multiphoton interference schemes that underlie protocols for quantum information processing and communication.
178 - G.Brida , M.Chekhova , M.Genovese 2008
Spontaneous parametric down conversion has been largely exploited as a tool for absolute calibration of photon counting detectors, photomultiplier tubes or avalanche photodiodes working in Geiger regime. In this work we investigate the extension of t his technique from very low photon flux of photon counting regime to the absolute calibration of analog photodetectors at higher photon flux. Moving toward higher photon rate, i.e. at high gain regime, with the spontaneous parametric down conversion shows intrinsic limitations of the method, while the stimulated parametric down conversion process, where a seed beam properly injected into the crystal in order to increase the photon generation rate in the conjugate arm, allows us to work around this problem. A preliminary uncertainty budget is discussed.
In this paper we report our systematic study of a promising absolute calibration technique of analog photo-detectors, based on the properties of parametric down conversion. Our formal results and a preliminary uncertainty analysis show that the propo sed method can be effectively developed with interesting applications to metrology.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا