ترغب بنشر مسار تعليمي؟ اضغط هنا

Implications for Galaxy Evolution from the Cosmic Evolution of Supernova Rate Density

197   0   0.0 ( 0 )
 نشر من قبل Takeshi Oda
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report a comprehensive statistical analysis of the observational data of the cosmic evolution of supernova (SN) rate density, to derive constraints on cosmic star formation history and the nature of type Ia supernova (SN Ia) progenitor. We use all available information of magnitude, SN type, and redshift information of both type Ia and core-collapse (CC) SNe in GOODS and SDF, as well as SN Ia rate densities reported in the literature. Furthermore, we also add 157 SN candidates in the past Subaru/Suprime-Cam data that are newly reported here, to increase the statistics. We find that the current data set of SN rate density evolution already gives a meaningful constraint on the evolution of the cosmic star formation rate (SFR) at z <~ 1, though strong constraints cannot be derived for the delay time distribution (DTD) of SNe Ia. We derive a constraint of the evolutionary index of SFR density alpha ~ 3--4 [(1+z)^alpha at z <~ 1] with an evidence for a significant evolution of mean extinction of CC SNe [E(B-V) ~ 0.5 at z ~ 0.5 compared with ~ 0.2 at z = 0], which does not change significantly within a reasonable range of various DTD models. This result is nicely consistent with the systematic trend of alpha estimates based on galactic SFR indicators in different wavelengths (ultraviolet, H_alpha, and infrared), indicating that there is a strong evolution in mean extinction of star forming regions in galaxies at relatively low redshift range of z <~ 0.5. These results are obtained by a method that is completely independent of galaxy surveys, and especially, there is no detection limit about the host galaxy luminosity in our analysis, giving a strong constraint on the star formation activity in high-z dwarf galaxies or intergalactic space.



قيم البحث

اقرأ أيضاً

We present a measurement of the volumetric Type Ia supernova (SN Ia) rate (SNR_Ia) as a function of redshift for the first four years of data from the Canada-France-Hawaii Telescope (CFHT) Supernova Legacy Survey (SNLS). This analysis includes 286 sp ectroscopically confirmed and more than 400 additional photometrically identified SNe Ia within the redshift range 0.1<z<1.1. The volumetric SNR_Ia evolution is consistent with a rise to z~1.0 that follows a power-law of the form (1+z)^alpha, with alpha=2.11+/-0.28. This evolutionary trend in the SNLS rates is slightly shallower than that of the cosmic star-formation history over the same redshift range. We combine the SNLS rate measurements with those from other surveys that complement the SNLS redshift range, and fit various simple SN Ia delay-time distribution (DTD) models to the combined data. A simple power-law model for the DTD (i.e., proportional to t^-beta) yields values from beta=0.98+/-0.05 to beta=1.15+/-0.08 depending on the parameterization of the cosmic star formation history. A two-component model, where SNR_Ia is dependent on stellar mass (Mstellar) and star formation rate (SFR) as SNR_Ia(z)=AxMstellar(z) + BxSFR(z), yields the coefficients A=1.9+/-0.1 SNe/yr/M_solar and B=3.3+/-0.2 SNe/yr/(M_solar/yr). More general two-component models also fit the data well, but single Gaussian or exponential DTDs provide significantly poorer matches. Finally, we split the SNLS sample into two populations by the light curve width (stretch), and show that the general behavior in the rates of faster-declining SNe Ia (0.8<s<1.0) is similar, within our measurement errors, to that of the slower objects (1.0<s<1.3) out to z~0.8.
The evolution of the number density of galaxies in the universe, and thus also the total number of galaxies, is a fundamental question with implications for a host of astrophysical problems including galaxy evolution and cosmology. However there has never been a detailed study of this important measurement, nor a clear path to answer it. To address this we use observed galaxy stellar mass functions up to $zsim8$ to determine how the number densities of galaxies changes as a function of time and mass limit. We show that the increase in the total number density of galaxies ($phi_{rm T}$), more massive than M$_{*} = 10^{6}$ M_0, decreases as $phi_{rm T} sim t^{-1}$, where $t$ is the age of the universe. We further show that this evolution turns-over and rather increases with time at higher mass lower limits of M$_{*}>10^{7}$ M_0. By using the M$_{*}=10^{6}$ M_0 lower limit we further show that the total number of galaxies in the universe up to $z = 8$ is $2.0^{+0.7}_{-0.6} times 10^{12}$ (two trillion), almost a factor of ten higher than would be seen in an all sky survey at Hubble Ultra-Deep Field depth. We discuss the implications for these results for galaxy evolution, as well as compare our results with the latest models of galaxy formation. These results also reveal that the cosmic background light in the optical and near-infrared likely arise from these unobserved faint galaxies. We also show how these results solve the question of why the sky at night is dark, otherwise known as Olbers paradox.
We find that disk galaxies show a sharp, mass-dependent transition in the structure of their dusty ISM. Dust lanes are a generic feature of massive disks with V_rot>120km/s, but are completely absent in galaxies with V_rot<120km/s. The transition ref lects an increase in the scale height of the cold ISM in low mass galaxies, driven by larger turbulent velocities supporting the gas layer, rather than sharp drops in the gas surface density. We identify the V_rot=120km/s transition with the onset of gravitational instabilities in high mass galaxies. The instabilities lead to fragmentation and gravitational collapse along spiral arms, smaller gas scale heights, lower turbulent velocities, and thus to narrow dust lanes. The drop in velocity dispersion may be due either to a switch in the driving mechanism for turbulence or to a change in the response of the ISM to supernovae after the ISM has collapsed to a dense layer. The resulting smaller gas scale height can lead to significant increases in the star formation rate when disk instabilities are present, and may explain the Kennicutt surface density threshold for star formation. Our data suggest that star formation will be systematically less efficient in low mass disks with V_c<120km/s, leading to star formation timescales longer than the gas accretion timescale. This effect can suppress the metallicity and nucleosynthetic yields of low mass disks, and thus explain the disk mass-metallicity relationship without invoking galactic SN-driven outflows. The transitions in disk stability, dust structure, and/or star formation efficiency may also be responsible for observed changes in the slope of the Tully-Fisher relation, in the sharp increase in the thickness of dwarf galaxy disks, and in the onset of bulges in galaxies with V_rot>120km/s. (Abridged)
We present a progress report on a project to derive the evolution of the volumetric supernova Type Ia rate from the Supernova Legacy Survey. Our preliminary estimate of the rate evolution divides the sample from Neill et al. (2006) into two redshift bins: 0.2 < z < 0.4, and 0.4 < z < 0.6. We extend this by adding a bin from the sample analyzed in Sullivan et al. (2006) in the range 0.6 < z < 0.75 from the same time period. We compare the derived trend with previously published rates and a supernova Type Ia production model having two components: one component associated closely with star formation and an additional component associated with host galaxy mass. Our observed trend is consistent with this model, which predicts a rising SN Ia rate out to at least z=2.
119 - Fabian Walter 2019
One of the last missing pieces in the puzzle of galaxy formation and evolution through cosmic history is a detailed picture of the role of the cold gas supply in the star-formation process. Cold gas is the fuel for star formation, and thus regulates the buildup of stellar mass, both through the amount of material present through a galaxys gas mass fraction, and through the efficiency at which it is converted to stars. Over the last decade, important progress has been made in understanding the relative importance of these two factors along with the role of feedback, and the first measurements of the volume density of cold gas out to redshift 4, (the cold gas history of the Universe) has been obtained. To match the precision of measurements of the star formation and black-hole accretion histories over the coming decades, a two orders of magnitude improvement in molecular line survey speeds is required compared to what is possible with current facilities. Possible pathways towards such large gains include significant upgrades to current facilities like ALMA by 2030 (and beyond), and eventually the construction of a new generation of radio-to-millimeter wavelength facilities, such as the next generation Very Large Array (ngVLA) concept.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا