ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum and Classical Glass Transitions in $Li Ho_x Y_{1-x} F_4$

90   0   0.0 ( 0 )
 نشر من قبل Daniel Silevitch
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

When performed in the proper low field, low frequency limits, measurements of the dynamics and the nonlinear susceptibility in the model Ising magnet in transverse field, $text{LiHo}_xtext{Y}_{1-x}text{F}_4$, prove the existence of a spin glass transition for $x$ = 0.167 and 0.198. The classical behavior tracks for the two concentrations, but the behavior in the quantum regime at large transverse fields differs because of the competing effects of quantum entanglement and random fields.



قيم البحث

اقرأ أيضاً

We use Monte Carlo simulations to study the one-dimensional long-range diluted Heisenberg spin glass with interactions that fall as a power, sigma, of the distance. Varying the power is argued to be equivalent to varying the space dimension of a shor t-range model. We are therefore able to study both the mean-field and non-mean-field regimes. For one value of sigma, in the non-mean-field regime, we find evidence that the chiral glass transition temperature may be somewhat higher than the spin glass transition temperature. For the other values of sigma we see no evidence for this.
The dynamic structure factor of lithium-diborate glass has been measured at several values of the momentum transfer $Q$ using high resolution inelastic x-ray scattering. Much attention has been devoted to the low $Q$-range, below the observed Ioffe-R egel crossover qco{}$simeq$ 2.1 nm$^{-1}$. We find that below qco{}, the linewidth of longitudinal acoustic waves increases with a high power of either $Q$, or of the frequency $Omega$, up to the crossover frequency OMco{} $simeq$ 9 meV that nearly coincides with the center of the boson peak. This new finding strongly supports the view that resonance and hybridization of acoustic waves with a distribution of rather local low frequency modes forming the boson peak is responsible for the end of acoustic branches in strong glasses. Further, we present high resolution Brillouin light-scattering data obtained at much lower frequencies on the same sample. These clearly rule out a simple $Omega^2$-dependence of the acoustic damping over the entire frequency range.
Monitored quantum circuits can exhibit an entanglement transition as a function of the rate of measurements, stemming from the competition between scrambling unitary dynamics and disentangling projective measurements. We study how entanglement dynami cs in non-unitary quantum circuits can be enriched in the presence of charge conservation, using a combination of exact numerics and a mapping onto a statistical mechanics model of constrained hard-core random walkers. We uncover a charge-sharpening transition that separates different scrambling phases with volume-law scaling of entanglement, distinguished by whether measurements can efficiently reveal the total charge of the system. We find that while Renyi entropies grow sub-ballistically as $sqrt{t}$ in the absence of measurement, for even an infinitesimal rate of measurements, all average Renyi entropies grow ballistically with time $sim t$. We study numerically the critical behavior of the charge-sharpening and entanglement transitions in U(1) circuits, and show that they exhibit emergent Lorentz invariance and can also be diagnosed using scalable local ancilla probes. Our statistical mechanical mapping technique readily generalizes to arbitrary Abelian groups, and offers a general framework for studying dissipatively-stabilized symmetry-breaking and topological orders.
We use molecular dynamics computer simulations to investigate the local motion of the particles in a supercooled simple liquid. Using the concept of the distance matrix we find that the alpha-relaxation corresponds to a small number of crossings from one meta-basin to a neighboring one. Each crossing is very rapid and involves the collective motion of O(40) particles that form a relatively compact cluster, whereas string-like motions seem not to be relevant for these transitions. These compact clusters are thus candidates for the cooperatively rearranging regions proposed long times ago by Adam and Gibbs.
It is well-known that spontaneous symmetry breaking in one spatial dimension is thermodynamically forbidden at finite energy density. Here we show that mirror-symmetric disorder in an interacting quantum system can invert this paradigm, yielding spon taneous breaking of mirror symmetry only at finite energy density and giving rise to mirror-glass order. The mirror-glass transition, which is driven by a finite density of interacting excitations, is enabled by many-body localization, and appears to occur simultaneously with the localization transition. This counterintuitive manifestation of localization-protected order can be viewed as a quantum analog of inverse freezing, a phenomenon that occurs, e.g., in certain models of classical spin glasses.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا