ﻻ يوجد ملخص باللغة العربية
We report on our attempts to achieve a nearly steady-state gas flow in hydrodynamical simulations of doubly barred galaxies. After exploring the parameter space, we construct two models, for which we evaluate the photometric and the kinematic integrals, present in the Tremaine-Weinberg method, in search of observational signatures of two rotating patterns. We show that such signatures are often present, but a direct fit to data points is likely to return incorrect pattern speeds. However, for a particular distribution of the tracer, presented here, the values of the pattern speeds can be retrieved reliably even with the direct fit.
At the intersection of galactic dynamics, evolution and global structure, issues such as the relation between bars and spirals and the persistence of spiral patterns can be addressed through the characterization of the angular speeds of the patterns
When integrals in the standard Tremaine-Weinberg method are evaluated for the case of a realistic model of a doubly barred galaxy, their modifications introduced by the second rotating pattern are in accord with what can be derived from a simple exte
Estimating the bar pattern speed (Om{}) is one of the main challenges faced in understanding the role of stellar bars in galaxy dynamical evolution. This work aims to characterise different uncertainty sources affecting the Tremaine Weinberg (TW)-met
The backbone of double bars is made out of double-frequency orbits, and loops, their maps, indicate the bars extent, morphology and dynamics.
We apply the Tremaine-Weinberg method to 19 nearby galaxies using stellar mass surface densities and velocities derived from the PHANGS-MUSE survey, to calculate (primarily bar) pattern speeds ($Omega_{rm P}$). After quality checks, we find that arou