ترغب بنشر مسار تعليمي؟ اضغط هنا

Disks around massive young stellar objects: are they common?

273   0   0.0 ( 0 )
 نشر من قبل Zhibo Jiang
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present K-band polarimetric images of several massive young stellar objects at resolutions $sim$ 0.1-0.5 arcsec. The polarization vectors around these sources are nearly centro-symmetric, indicating they are dominating the illumination of each field. Three out of the four sources show elongated low-polarization structures passing through the centers, suggesting the presence of polarization disks. These structures and their surrounding reflection nebulae make up bipolar outflow/disk systems, supporting the collapse/accretion scenario as their low-mass siblings. In particular, S140 IRS1 show well defined outflow cavity walls and a polarization disk which matches the direction of previously observed equatorial disk wind, thus confirming the polarization disk is actually the circumstellar disk. To date, a dozen massive protostellar objects show evidence for the existence of disks; our work add additional samples around MYSOs equivalent to early B-type stars.



قيم البحث

اقرأ أيضاً

Recent radio astronomical observations have revealed that HC$_{5}$N, the second shortest cyanopolyyne (HC$_{2n+1}$N), is abundant around some massive young stellar objects (MYSOs), which is not predicted by classical carbon-chain chemistry. For examp le, the observed HC$_{5}$N abundance toward the G28.28$-$0.36 MYSO is higher than that in L1527, which is one of the warm carbon chain chemistry (WCCC) sources, by more than one order of magnitude (Taniguchi et al., 2017). In this paper, we present chemical simulations of hot-core models with a warm-up period using the astrochemical code Nautilus. We find that the cyanopolyynes are formed initially in the gas phase and accreted onto the bulk and surface of granular ice mantles during the lukewarm phase, which occurs at $25 < T < 100$ K. In slow warm-up period models, the peak abundances occur as the cyanopolyynes desorb from dust grains after the temperature rises above 100 K. The lower limits of the abundances of HC$_{5}$N, CH$_{3}$CCH, and CH$_{3}$OH observed in the G28.28$-$0.36 MYSO can be reproduced in our hot-core models, after their desorption from dust grains. Moreover, previous observations suggested chemical diversity in envelopes around different MYSOs. We discuss possible interpretations of relationships between stages of the star-formation process and such chemical diversity, such as the different warm-up timescales. This timescale depends not only on the mass of central stars but also on the relationship between the size of warm regions and their infall velocity.
Recent observations have suggested that circumstellar disks may commonly form around young stellar objects. Although the formation of circumstellar disks can be a natural result of the conservation of angular momentum in the parent cloud, theoretical studies instead show disk formation to be difficult from dense molecular cores magnetized to a realistic level, owing to efficient magnetic braking that transports a large fraction of the angular momentum away from the circumstellar region. We review recent progress in the formation and early evolution of disks around young stellar objects of both low-mass and high-mass, with an emphasis on mechanisms that may bridge the gap between observation and theory, including non-ideal MHD effects and asymmetric perturbations in the collapsing core (e.g., magnetic field misalignment and turbulence). We also address the associated processes of outflow launching and the formation of multiple systems, and discuss possible implications in properties of protoplanetary disks.
Magnetic fields have only recently been included in theoretical simulations of high-mass star formation. The simulations show that magnetic fields can play a crucial role not only in the formation and dynamics of molecular outflows, but also in the e volution of circumstellar disks. Therefore, new measurements of magnetic fields at milliarcsecond resolution close to massive young stellar objects (YSOs) are fundamental for providing new input for numerical simulations and for understanding the formation process of massive stars. The polarized emission of 6.7 GHz CH3OH masers allows us to investigate the magnetic field close to the massive YSO where the outflows and disks are formed. Recently, we have detected with the EVN CH3OH maser polarized emission towards 10 massive YSOs. From a first statistical analysis we have found evidence that magnetic fields are primarily oriented along the molecular outflows. To improve our statistics we are carrying on a large observational EVN campaign for a total of 19 sources, the preliminary results of the first seven sources are presented in this contribution. Furthermore, we also describe our efforts to estimate the Lande g-factors of the CH3OH maser transition to determine the magnetic field strength from our Zeeman-splitting measurements.
An observational review is provided of the properties of accretion disks around young stars. It concerns the primordial disks of intermediate- and high-mass young stellar objects in embedded and optically revealed phases. The properties were derived from spatially resolved observations and therefore predominantly obtained with interferometric means, either in the radio/(sub)millimeter or in the optical/infrared wavelength regions. We make summaries and comparisons of the physical properties, kinematics, and dynamics of these circumstellar structures and delineate trends where possible. Amongst others, we report on a quadratic trend of mass accretion rates with mass from T Tauri stars to the highest mass young stellar objects and on the systematic difference in mass infall and accretion rates.
274 - J. Varga , P. Abraham , L. Chen 2018
Context. Protoplanetary disks show large diversity regarding their morphology and dust composition. With mid-infrared interferometry the thermal emission of disks can be spatially resolved, and the distribution and properties of the dust within can b e studied. Aims. Our aim is to perform a statistical analysis on a large sample of 82 disks around low- and intermediate-mass young stars, based on mid-infrared interferometric observations. We intend to study the distribution of disk sizes, variability, and the silicate dust mineralogy. Methods. Archival mid-infrared interferometric data from the MIDI instrument on the VLTI are homogeneously reduced and calibrated. Geometric disk models are used to fit the observations to get spatial information about the disks. An automatic spectral decomposition pipeline is applied to analyze the shape of the silicate feature. Results. We present the resulting data products in the form of an atlas, containing N band correlated and total spectra, visibilities, and differential phases. The majority of our data can be well fitted with a continuous disk model, except for a few objects, where a gapped model gives a better match. From the mid-infrared size--luminosity relation we find that disks around T Tauri stars are generally colder and more extended with respect to the stellar luminosity than disks around Herbig Ae stars. We find that in the innermost part of the disks ($r lesssim 1$~au) the silicate feature is generally weaker than in the outer parts, suggesting that in the inner parts the dust is substantially more processed. We analyze stellar multiplicity and find that in two systems (AB Aur and HD 72106) data suggest a new companion or asymmetric inner disk structure. We make predictions for the observability of our objects with the upcoming MATISSE instrument, supporting the practical preparations of future MATISSE observations of T Tauri stars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا