ﻻ يوجد ملخص باللغة العربية
Strong selection effects are present in observational samples of cataclysmic variables (CVs), complicating comparisons to theoretical predictions. The selection criteria used to define most CV samples discriminate heavily against the discovery of short-period, intrinsically faint systems. The situation can be improved by selecting CVs for the presence of emission lines. For this reason, we have constructed a homogeneous sample of CVs selected on the basis of Halpha emission. We present discovery observations of the 14 CVs and 2 additional CV candidates found in this search. The orbital periods of 11 of the new CVs were measured; all are above 3 h. There are two eclipsing systems in the sample, and one in which we observed a quasi-periodic modulation on a sim 1000 s time-scale. We also detect the secondary star in the spectrum of one system, and measure its spectral type. Several of the new CVs have the spectroscopic appearance of nova-like variables (NLs), and a few display what may be SW Sex star behaviour. In a companion paper, we discuss the implications of this new sample for CV evolution.
We present time-resolved photometry of five relatively poorly-studied cataclysmic variables: V1193 Ori, LQ Peg, LD 317, V795 Her, and MCT 2347-3144. The observations were made using four 1m-class telescopes for a total of more than 250 h of observati
We report on the properties of 71 known cataclysmic variables (CVs) in photometric Halpha emission line surveys. Our study is motivated by the fact that the Isaac Newton Telescope (INT) Photometric Halpha Survey of the northern galactic plane (IPHAS)
We report the discovery of 11 new cataclysmic variable (CV) candidates by the Isaac Newton Telescope (INT) Photometric H alpha Survey of the northern Galactic plane (IPHAS). Three of the systems have been the subject of further follow-up observations
A sample of Cataclysmic Variables (CVs) is presented including spectroscopically identified 380 spectra of 245 objects, of which 58 CV candidates are new discoveries. The BaggingTopPush and the Random Forest algorithms are applied to the Fifth Data R
The RApid Temporal Survey (RATS) is a survey to detect objects whose optical intensity varies on timescales of less than ~70 min. In our pilot dataset taken with the INT and the Wide Field Camera in Nov 2003 we discovered nearly 50 new variable objec