ﻻ يوجد ملخص باللغة العربية
We study the Mott transition occurring for bosonic Hubbard models in one, two, and three spatial dimensions, by means of a variational wave function benchmarked by Greens function Monte Carlo calculations. We show that a very accurate variational wave function, constructed by applying a long-range Jastrow factor to the non-interacting boson ground state, can describe the superfluid-insulator transition in any dimensionality. Moreover, by mapping the quantum averages over such a wave function into the the partition function of a classical model, important insights into the insulating phase are uncovered. Finally, the evidence in favor of anomalous scenarios for the Mott transition in two dimensions are reported whenever additional long-range repulsive interactions are added to the Hamiltonian.
The Mott-Anderson transition in the disordered charge-transfer model displays several new features in comparison to what is found in the disordered single-band Hubbard model, as recently demonstrated by large-scale computational (statistical dynamica
We study the Mott metal-insulator transition in the two-band Hubbard model with different hopping amplitudes $t_1$ and $t_2$ for the two orbitals on the two-dimensional square lattice by using {it non-magnetic} variational wave functions, similarly t
We examine finite-temperature phase transitions in the two-orbital Hubbard model with different bandwidths by means of the dynamical mean-field theory combined with the continuous-time quantum Monte Carlo method. It is found that there emerges a pecu
We analyze the Coulomb interacting problem in undoped graphene layers by using an excitonic variational ansatz. By minimizing the energy, we derive a gap equation which reproduces and extends known results. We show that a full treatment of the exchan
We analyze the nature of Mott metal-insulator transition in multiorbital systems using dynamical mean-field theory (DMFT). The auxiliary multiorbital quantum impurity problem is solved using continuous time quantum Monte Carlo (CTQMC) and the rotatio