ترغب بنشر مسار تعليمي؟ اضغط هنا

Large magnetothermal conductivity in GdBaCo_{2}O_{5+x} single crystals

92   0   0.0 ( 0 )
 نشر من قبل X. F. Sun
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English
 تأليف X. F. Sun




اسأل ChatGPT حول البحث

To study the effects of paramagnetic spins on phonons, both the in-plane and the c-axis heat transport of GdBaCo_{2}O_{5+x} (GBCO) single crystals are measured at low temperature down to 0.36 K and in magnetic field up to 16 T. It is found that the phonon heat transport is very strongly affected by the magnetic field and nearly 5 times increase of the thermal conductivity in several Tesla field is observed at 0.36 K. It appears that phonons are resonantly scattered by paramagnetic spins in zero field and the application of magnetic field removes such strong scattering, but the detailed mechanism is to be elucidated.



قيم البحث

اقرأ أيضاً

84 - X. M. Wang , C. Fan , Z. Y. Zhao 2010
We study the low-temperature heat transport of HoMnO_3 single crystals to probe the magnetic structures and their transitions induced by magnetic field. It is found that the low-T thermal conductivity (kappa) shows very strong magnetic-field dependen ce, with the strongest suppression of nearly 90% and the biggest increase of 20 times of kappa compared to its zero-field value. In particular, some ``dip-like features show up in kappa(H) isotherms for field along both the ab plane and the c axis. These behaviors are found to shed new light on the complex H-T phase diagram and the field-induced re-orientations of Mn^{3+} and Ho^{3+} spin structures. The results also demonstrate a significant spin-phonon coupling in this multiferroic compound.
We report on the magnetic field (0T$ le B le 9$T) dependence of the longitudinal thermal conductivity $kappa(T,B)$ of highly oriented pyrolytic graphite in the temperature range 5 K $le Tle$ 20 K for fields parallel to the $c-$axis. We show that $kap pa(T,B)$ shows large oscillations in the high-field region (B > 2 T) where clear signs of the Quantum-Hall effect are observed in the Hall resistance. With the measured longitudinal electrical resistivity we show that the Wiedemann-Franz law is violated in the high-field regime.
54 - G. Wu , B. L. Kang , Y. L. Li 2017
In intercalated transition metal dichalcogenide $Fe_xTaS_2$ (0.2 $leq$ x $leq$ 0.4) single crystals, large magnetic anisotropy is observed. Transport property measurements indicate that heavy Fe-doping leads to a large anisotropy of resistivity ($rho $$_{c}$/$rho$$_{ab}$). A sharp M-H hysteresis curve is observed with magnetic field along c-axis, while a linear magnetization appears with magnetic field applied in the ab-plane. The angular dependent magnetic susceptibility from in-plane to out-of-plane indicates that magnetic moments are strongly pinned along the c-axis in an unconventional manner and the coercive field reaches as large as 6 T at T = 5 K. First-principles calculation clearly suggests that the strong spin-orbital coupling give rise to such a large anisotropy of magnetism. The strong pinning effect of magnetic moments along c-axis makes this material a very promising candidate for the development of spin-aligner in spintronics devices.
Low frequency noise in current biased La$_{0.82}$Ca$_{0.18}$MnO$_{3}$ single crystals has been investigated in a wide temperature range from 79 K to 290 K. Despite pronounced changes in magnetic properties and dissipation mechanisms of the sample wit h changing temperature, the noise spectra were found to be always of the 1/f type and their intensity (except the lowest temperature studied) scaled as a square of the bias. At liquid nitrogen temperatures and under bias exceeding some threshold value, the behavior of the noise deviates from the quasi-equilibrium modulation noise and starts to depend in a non monotonic way on bias. It has been verified that the observed noise obeys Dutta and Horn model of 1/f noise in solids. The appearance of nonequilibrium 1/f noise and its dependence on bias have been associated with changes in the distribution of activation energies in the underlying energy landscape. These changes have been correlated with bias induced changes in the intrinsic tunneling mechanism dominating dissipation in La$_{0.82}$Ca$_{0.18}$MnO$_{3}$ at low temperatures.
Conductivity noise in dc current biased La_{0.82}Ca_{0.18}MnO_{3} single crystals has been investigated in different metastable resistivity states enforced by applying voltage pulses to the sample at low temperatures. Noise measured in all investigat ed resistivity states is of 1/f-type and its intensity at high temperatures and low dc bias scales as a square of the bias. At liquid nitrogen temperatures for under bias exceeding a threshold value, the behavior of the noise deviates from above quasi- equilibrium modulation noise and depends in a non monotonic way on applied bias. The bias range of nonequilibrium 1/f noise coincides with the range at which the conductance increases linearly with bias voltage. This feature is attributed to a broad continuity of states enabling indirect inelastic tunneling across intrinsic tunnel junctions. The nonequilibrium noise has been ascribed to indirect intrinsic tunneling mechanism while resistivity changes in metastable states to variations in the energy landscape for charge carriers introduced by microcracks created by the pulse procedures employed
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا