ترغب بنشر مسار تعليمي؟ اضغط هنا

Bound States of the Klein-Gordon Equation for Woods-Saxon Potential With Position Dependent Mass

134   0   0.0 ( 0 )
 نشر من قبل Ramazan Sever
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The effective mass Klein-Gordon equation in one dimension for the Woods-Saxon potential is solved by using the Nikiforov-Uvarov method. Energy eigenvalues and the corresponding eigenfunctions are computed. Results are also given for the constant mass case.



قيم البحث

اقرأ أيضاً

The energy eigenvalues and the corresponding eigenfunctions of the one-dimensional Klein-Gordon equation with q-parameter Poschl-Teller potential are analytically obtained within the position-dependent mass formalism. The parametric generalization of the Nikiforov-Uvarov method is used in the calculations by choosing a mass distribution.
The Klein-Gordon equation is solved approximately for the Hulth{e}n potential for any angular momentum quantum number $ell$ with the position-dependent mass. Solutions are obtained reducing the Klein-Gordon equation into a Schr{o}dinger-like differen tial equation by using an appropriate coordinate transformation. The Nikiforov-Uvarov method is used in the calculations to get an energy eigenvalue and and the wave functions. It is found that the results in the case of constant mass are in good agreement with the ones obtained in the literature.
The scattering solutions of the one-dimensional Schrodinger equation for the Woods-Saxon potential are obtained within the position-dependent mass formalism. The wave functions, transmission and reflection coefficients are calculated in terms of Heun s function. These results are also studied for the constant mass case in detail.
The Dirac equation is solved approximately for the Hulthen potential with the pseudospin symmetry for any spin-orbit quantum number $kappa$ in the position-dependent mass background. Solutions are obtained reducing the Dirac equation into a Schr{o}di nger-like differential equation by using an appropriate coordinate transformation. The Nikiforov-Uvarov method is used in the calculations to get energy eigenvalues and the corresponding wave functions.
277 - Altug Arda , Ramazan Sever 2010
The one-dimensional effective-mass Klein-Gordon equation for the real, and non-textrm{PT}-symmetric/non-Hermitian generalized Morse potential is solved by taking a series expansion for the wave function. The energy eigenvalues, and the corresponding eigenfunctions are obtained. They are also calculated for the constant mass case.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا