ترغب بنشر مسار تعليمي؟ اضغط هنا

Surfaces in three-dimensional Lie groups in terms of spinors

212   0   0.0 ( 0 )
 نشر من قبل Iskander A. Taimanov
 تاريخ النشر 2009
  مجال البحث
والبحث باللغة English
 تأليف I.A. Taimanov




اسأل ChatGPT حول البحث

This is a survey of results on surfaces in noncommutative three-dimensional Lie groups obtained by using the Weierstrass (spinor) representation of surfaces. It is based on the talk given at the conference Geometry related to the theory of integrable systems (RIMS, Kyoto, September 2007).



قيم البحث

اقرأ أيضاً

144 - Paul Woon Yin Lee 2011
In this paper, we introduce two notions on a surface in a contact manifold. The first one is called degree of transversality (DOT) which measures the transversality between the tangent spaces of a surface and the contact planes. The second quantity, called curvature of transversality (COT), is designed to give a comparison principle for DOT along characteristic curves under bounds on COT. In particular, this gives estimates on lengths of characteristic curves assuming COT is bounded below by a positive constant. We show that surfaces with constant COT exist and we classify all graphs in the Heisenberg group with vanishing COT. This is accomplished by showing that the equation for graphs with zero COT can be decomposed into two first order PDEs, one of which is the backward invisicid Burgers equation. Finally we show that the p-minimal graph equation in the Heisenberg group also has such a decomposition. Moreover, we can use this decomposition to write down an explicit formula of a solution near a regular point.
In this paper we consider the Matsumoto metric $F=frac{alpha^2}{alpha-beta}$, on the three dimensional real vector space and obtain the partial differential equations that characterize the minimal surfaces which are graphs of smooth functions and the n we prove that plane is the only such surface. We also obtain the partial differential equation that characterizes the minimal translation surfaces and show that again plane is the only such surface.
These lecture notes in Lie Groups are designed for a 1--semester third year or graduate course in mathematics, physics, engineering, chemistry or biology. This landmark theory of the 20th Century mathematics and physics gives a rigorous foundation to modern dynamics, as well as field and gauge theories in physics, engineering and biomechanics. We give both physical and medical examples of Lie groups. The only necessary background for comprehensive reading of these notes are advanced calculus and linear algebra.
We answer in the affirmative a question posed by Ivanov and Vassilev on the existence of a seven dimensional quaternionic contact manifold with closed fundamental 4-form and non-vanishing torsion endomorphism. Moreover, we show an approach to the cla ssification of seven dimensional solvable Lie groups having an integrable left invariant quaternionic contact structure. In particular, we prove that the unique seven dimensional nilpotent Lie group admitting such a structure is the quaternionic Heisenberg group.
In this paper we consider a three dimensional Kropina space and obtain the partial differential equation that characterizes a minimal surfaces with the induced metric. Using this characterization equation we study various immersions of minimal surfac es. In particular, we obtain the partial differential equation that characterizes the minimal translation surfaces and show that the plane is the only such surface.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا