ترغب بنشر مسار تعليمي؟ اضغط هنا

A Raman study of the Charge-Density-Wave State in A$_{0.3}$MoO$_3$ (A = K,Rb)

122   0   0.0 ( 0 )
 نشر من قبل Paul van Loosdrecht
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report a comparative Raman spectroscopic study of the quasi-one-dimensional charge-density-wave systems ab (A = K, Rb). The temperature and polarization dependent experiments reveal charge-coupled vibrational Raman features. The strongly temperature-dependent collective amplitudon mode in both materials differ by about 3 cm, thus revealing the role of alkali atom. We discus the observed vibrational features in terms of charge-density-wave ground state accompanied by change in the crystal symmetry. A frequency-kink in some modes seen in bb between T = 80 K and 100 K supports the first-order lock-in transition, unlike rb. The unusually sharp Raman lines(limited by the instrumental response) at very low temperatures and their temperature evolution suggests that the decay of the low energy phonons is strongly influenced by the presence of the temperature dependent charge density wave gap.



قيم البحث

اقرأ أيضاً

59 - Yuhang Ren , Zhuan Xu , 2003
Low-energy coherent charge-density wave excitations are investigated in blue bronze (K$_{0.3}$MoO$_{3}$) and red bronze (K$_{0.33}$MoO$_{3}$) by femtosecond pump-probe spectroscopy. A linear gapless, acoustic-like dispersion relation is observed for the transverse phasons with a pronounced anisotropy in K$_{0.33}$MoO$_{3}$. The amplitude mode exhibits a weak (optic-like) dispersion relation with a frequency of 1.67 THz at 30 K. Our results show for the first time that the time-resolved optical technique provides momentum resolution of collective excitations in strongly correlated electron systems.Low-energy coherent charge-density wave excitations are investigated in blue bronze (K$_{0.3}$MoO$_{3}$) and red bronze (K$_{0.33}$MoO$_{3}$) by femtosecond pump-probe spectroscopy. A linear gapless, acoustic-like dispersion relation is observed for the transverse phasons with a pronounced anisotropy in K$_{0.33}$MoO$_{3}$. The amplitude mode exhibits a weak (optic-like) dispersion relation with a frequency of 1.67 THz at 30 K. Our results show for the first time that the time-resolved optical technique provides momentum resolution of collective excitations in strongly correlated electron systems.
We report the existence of the charge density wave (CDW) in the ground state of 1D Kondo lattice model at the filling of n=0.75 in the weak coupling region. The CDW is driven by the effective Coulomb repulsion mediated by the localized spins. Based o n our numerical results using the density matrix renormalization group method, we show that the CDW phase appears in the paramagnetic region previously known as the Tomonaga-Luttinger liquid. The emergence of this phase serves as an example of CDW phase induced without bare repulsive interactions, and enriches the phase diagram of the 1D Kondo lattice model.
Charge density wave, or CDW, is usually associated with Fermi surfaces nesting. We here report a new CDW mechanism discovered in a 2H-structured transition metal dichalcogenide, where the two essential ingredients of CDW are realized in very anomalou s ways due to the strong-coupling nature of the electronic structure. Namely, the CDW gap is only partially open, and charge density wavevector match is fulfilled through participation of states of the large Fermi patch, while the straight FS sections have secondary or negligible contributions.
We report the magnetoresistance of a charge-density wave (CDW) in $o$-TaS$_3$ whiskers at 4.2 K under a magnetic field up to 5.2 T. An anisotropic negative magnetoresistance is found in the nonlinear regime of current-voltage characteristics. The ang le dependence of the magnetoresistance, studied by rotating the magnetic field upon the $c$-axis, exhibited a two-fold symmetry. The magnetoresistance amplitude exhibits maxima when the field is parallel to the $a$-axis, whereas it vanishes to the $b$-axis. The observed anisotropy may come from difference in interchain coupling of adjacent CDWs along the $a$- and $b$-axes. Comparison of the anisotropy to the scanning tunneling microscope image of CDWs allows us to provide a simple picture to explain the magnetoresistance in terms of delocalization of quantum interference of CDWs extending over the $b$-$c$ plane.
179 - B. F. Hu , P. Zheng , R. H. Yuan 2010
We performed optical spectroscopy measurement on single crystal of CeTe$_3$, a rare-earth element tri-telluride charge density wave (CDW) compound. The optical spectra are found to display very strong temperature dependence. Besides a large and prono unced CDW energy gap being present already at room temperature as observed in earlier studies, the present measurement revealed the formation of another energy gap at smaller energy scale at low temperature. The second CDW gap removes the electrons near E$_F$ which undergo stronger scattering. The study yields evidence for the presence of multiple CDW orders or strong fluctuations in the light rare-earth element tri-telluride.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا