ﻻ يوجد ملخص باللغة العربية
Functionalization of carbon nanotubes with hydrosoluble porphyrins (TPPS) is achieved by $pi$-stacking. The porphyrin/nanotube interaction is studied by means of optical absorption, photoluminescence and photoluminescence excitation spectroscopies. The main absorption line of the porphyrins adsorbed on nanotubes exhibits a 120 meV red shift, which we ascribe to a flattening of the molecule in order to optimize $pi-pi$ interactions. The porphyrin-nanotube complex shows a strong quenching of the TPPS emission while the photoluminescence intensity of the nanotubes is enhanced when the excitation laser is in resonance with the porphyrin absorption band. This reveals an efficient excitation transfer from the TPPS to the carbon nanotube.
We report on a new, orginal and efficient method for pi-stacking functionalization of single wall carbon nanotubes. This method is applied to the synthesis of a high-yield light-harvesting system combining single wall carbon nanotubes and porphyrin m
Transfer of energy and information through molecule aggregates requires as one important building block anisotropic, cable-like structures. Knowledge on the spatial correlation of luminescence and morphology represents a prerequisite in the understan
We study within the many-body Greens function GW and Bethe-Salpeter approaches the neutral singlet excitations of the zinctetraphenylporphyrin and C70 fullerene donor-acceptor complex. The lowest transition is a charge-transfer excitation between the
We report on the nano-electron beam assisted fabrication of atomically sharp iron-based tips and on the creation of a nano-soldering iron for nano-interconnects using Fe-filled multiwalled carbon nanotubes (MWCNTs). High energy electron beam machinin
Aligned, densely-packed carbon nanotube metamaterials prepared using vacuum filtration are an emerging infrared nanophotonic material. We report multiple hyperbolic plasmon resonances, together spanning the mid-infrared, in individual resonators made