ﻻ يوجد ملخص باللغة العربية
The statistical problem for network tomography is to infer the distribution of $mathbf{X}$, with mutually independent components, from a measurement model $mathbf{Y}=Amathbf{X}$, where $A$ is a given binary matrix representing the routing topology of a network under consideration. The challenge is that the dimension of $mathbf{X}$ is much larger than that of $mathbf{Y}$ and thus the problem is often called ill-posed. This paper studies some statistical aspects of network tomography. We first address the identifiability issue and prove that the $mathbf{X}$ distribution is identifiable up to a shift parameter under mild conditions. We then use a mixture model of characteristic functions to derive a fast algorithm for estimating the distribution of $mathbf{X}$ based on the General method of Moments. Through extensive model simulation and real Internet trace driven simulation, the proposed approach is shown to be favorable comparing to previous methods using simple discretization for inferring link delays in a heterogeneous network.
This is a comment to the paper A study of problems encountered in Granger causality analysis from a neuroscience perspective. We agree that interpretation issues of Granger Causality in Neuroscience exist (partially due to the historical unfortunate
The purpose of this paper is to construct confidence intervals for the regression coefficients in the Fine-Gray model for competing risks data with random censoring, where the number of covariates can be larger than the sample size. Despite strong mo
We consider a resampling scheme for parameters estimates in nonlinear regression models. We provide an estimation procedure which recycles, via random weighting, the relevant parameters estimates to construct consistent estimates of the sampling dist
Motivated by modeling and analysis of mass-spectrometry data, a semi- and nonparametric model is proposed that consists of a linear parametric component for individual location and scale and a nonparametric regression function for the common shape. A
Inverse probability of treatment weighting (IPTW) is a popular method for estimating the average treatment effect (ATE). However, empirical studies show that the IPTW estimators can be sensitive to the misspecification of the propensity score model.