ﻻ يوجد ملخص باللغة العربية
For a finite p-group G and a bounded below G-spectrum X of finite type mod p, the G-equivariant Segal conjecture for X asserts that the canonical map X^G --> X^{hG} is a p-adic equivalence. Let C_{p^n} be the cyclic group of order p^n. We show that if the C_p Segal conjecture holds for a C_{p^n} spectrum X, as well as for each of its C_{p^e} geometric fixed points for 0 < e < n, then then C_{p^n} Segal conjecture holds for X. Similar results hold for weaker forms of the Segal conjecture, asking only that the canonical map induces an equivalence in sufficiently high degrees, on homotopy groups with suitable finite coefficients.
For a profinite group $G$, let $(text{-})^{hG}$, $(text{-})^{h_dG}$, and $(text{-})^{hG}$ denote continuous homotopy fixed points for profinite $G$-spectra, discrete $G$-spectra, and continuous $G$-spectra (coming from towers of discrete $G$-spectra)
If K is a discrete group and Z is a K-spectrum, then the homotopy fixed point spectrum Z^{hK} is Map_*(EK_+, Z)^K, the fixed points of a familiar expression. Similarly, if G is a profinite group and X is a discrete G-spectrum, then X^{hG} is often gi
We introduce a computationally tractable way to describe the $mathbb Z$-homotopy fixed points of a $C_{n}$-spectrum $E$, producing a genuine $C_{n}$ spectrum $E^{hnmathbb Z}$ whose fixed and homotopy fixed points agree and are the $mathbb Z$-homotopy
We give a new description of Rosenthals generalized homotopy fixed point spaces as homotopy limits over the orbit category. This is achieved using a simple categorical model for classifying spaces with respect to families of subgroups.
Let E be a k-local profinite G-Galois extension of an E_infty-ring spectrum A (in the sense of Rognes). We show that E may be regarded as producing a discrete G-spectrum. Also, we prove that if E is a profaithful k-local profinite extension which sat