ﻻ يوجد ملخص باللغة العربية
We regularise the 3d lambda phi^4 model by discretising the Euclidean time and representing the spatial part on a fuzzy sphere. The latter involves a truncated expansion of the field in spherical harmonics. This yields a numerically tractable formulation, which constitutes an unconventional alternative to the lattice. In contrast to the 2d version, the radius R plays an independent r^{o}le. We explore the phase diagram in terms of R and the cutoff, as well as the parameters m^2 and lambda. Thus we identify the phases of disorder, uniform order and non-uniform order. We compare the result to the phase diagrams of the 3d model on a non-commutative torus, and of the 2d model on a fuzzy sphere. Our data at strong coupling reproduce accurately the behaviour of a matrix chain, which corresponds to the c=1-model in string theory. This observation enables a conjecture about the thermodynamic limit.
In the previous paper hep-th/0312199 we studied the t Hooft-Polyakov (TP) monopole configuration in the U(2) gauge theory on the fuzzy 2-sphere and showed that it has a nonzero topological charge in the formalism based on the Ginsparg-Wilson relation
We present a numerical study of a two dimensional model of the Wess-Zumino type. We formulate this model on a sphere, where the fields are expanded in spherical harmonics. The sphere becomes fuzzy by a truncation in the angular momenta. This leads to
We study boundary scattering in the $phi^4$ model on a half-line with a one-parameter family of Neumann-type boundary conditions. A rich variety of phenomena is observed, which extends previously-studied behaviour on the full line to include regimes
The Constrained Effective Potential (CEP) is known to be equivalent to the usual Effective Potential (EP) in the infinite volume limit. We have carried out MonteCarlo calculations based on the two different definitions to get informations on finite s
Using the Hopf fibration and starting from a four dimensional noncommutative Moyal plane, $R^2_{theta}times R^2_{theta}$, we obtain a star-product for the noncommutative (fuzzy) $R^3_{lambda}$ defined by $[x^i,x^j]=ilambdaepsilon_{ijk}x^k$. Furthermo