ﻻ يوجد ملخص باللغة العربية
Penning trap measurements using mixed beams of 100Mo - 100Ru and 76Ge - 76Se have been utilized to determine the double-beta decay Q-values of 100Mo and 76Ge with uncertainties less than 200 eV. The value for 76Ge, 2039.04(16) keV is in agreement with the published SMILETRAP value. The new value for 100Mo, 3034.40(17) keV is 30 times more precise than the previous literature value, sufficient for the ongoing neutrinoless double-beta decay searches in 100Mo. Moreover, the precise Q-value is used to calculate the phase-space integrals and the experimental nuclear matrix element of double-beta decay.
Masses of the radioactive isotopes 62Ga, 62Zn and 62Cu have been measured at the JYFLTRAP facility with a relative precision of better than 18 ppb. A Q_EC value of (9181.07 +- 0.54) keV for the superallowed decay of 62Ga is obtained from the measured
The double beta decay of 100Mo to the 0^+_1 and 2^+_1 excited states of 100Ru is studied using the NEMO 3 data. After the analysis of 8024 h of data the half-life for the two-neutrino double beta decay of 100Mo to the excited 0^+_1 state is measured
Background: The understanding and description of forbidden decays provides interesting challenges for nuclear theory. These calculations could help to test underlying nuclear models and interpret experimental data. Purpose: Compare a direct measureme
We report a direct measurement of the Q-value of the neutrinoless double-beta-decay candidate 48Ca at the TITAN Penning-trap mass spectrometer, with the result that Q = 4267.98(32) keV. We measured the masses of both the mother and daughter nuclides,
$^{48}$Ca, the lightest double beta decay candidate, is the only one simple enough to be treated exactly in the nuclear shell model. Thus, the $betabeta(2 u)$ half-life measurement, reported here, provides a unique test of the nuclear physics involve