ﻻ يوجد ملخص باللغة العربية
We present a combined experimental and theoretical study of the effects of pressure on T_c of the hexagonal layered superconductors nH-CaAlSi (n = 1, 5, 6), where nH labels the different stacking variants that were recently discovered. Experimentally, the pressure dependence of T_c has been investigated by measuring the magnetic susceptibility of single crystals up to 10 kbar. In contrast to previous results on polycrystalline samples, single crystals with different stacking sequences display different pressure dependences of T_c. 1H-CaAlSi shows a decrease of T_c with pressure, whereas 5H and 6H-CaAlSi exhibit an increase of T_c with pressure. Ab-initio calculations for 1H, 5H and 6H -CaAlSi reveal that an ultrasoft phonon branch associated to out-of-plane vibrations of the Al-Si layers softens with pressure, leading to a structural instability at high pressures. For 1H-CaAlSi the softening is not sufficient to cause an increase of T_c, which is consistent with the present experiments, but adverse to previous reports. For 5H and 6H the softening provides the mechanism to understand the observed increase of T_c with pressure. Calculations for hypothetical 2H and 3H stacking variants reveal qualitative and quantitative differences.
La3Co4Sn13 is a superconducting material with transition temperature at Tc = 2.70 K, which presents a superlattice structural transition at T* ~ 150 K, a common feature for this class of compounds. However, for this material, it is not clear that at
By means of synchrotron X-ray diffraction, we studied the effect of high pressure, P, up to 13 GPa on the room temperature crystal structure of superconducting CaC6. In this P range, no change of the pristine space group symmetry, textit{R=3m}, is fo
The effects of pressure on the superconducting properties of a Bi-based layered superconductor La2O2Bi3Ag0.6Sn0.4S6, which possesses a four-layer-type conducting layer, have been studied through the electrical resistance and magnetic susceptibility m
Investigating the pressure dependence of the superconducting (SC) transition temperature $T_{rm c}$ is crucial for understanding the SC mechanism. Herein, we report on the pressure dependence of $T_{rm c}$ in the nonmagnetic topological line-nodal ma
Our experiments show that for two or more pieces of a wire, of different lengths in general, combined in parallel and connected to a dc source, the current ratio evolves towards unity as the combination is cooled to the superconducting transition tem